Step |
Hyp |
Ref |
Expression |
1 |
|
ordtr |
⊢ ( Ord 𝐴 → Tr 𝐴 ) |
2 |
|
suctr |
⊢ ( Tr 𝐴 → Tr suc 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( Ord 𝐴 → Tr suc 𝐴 ) |
4 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
5 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
6 |
|
elon2 |
⊢ ( 𝐴 ∈ On ↔ ( Ord 𝐴 ∧ 𝐴 ∈ V ) ) |
7 |
|
snssi |
⊢ ( 𝐴 ∈ On → { 𝐴 } ⊆ On ) |
8 |
6 7
|
sylbir |
⊢ ( ( Ord 𝐴 ∧ 𝐴 ∈ V ) → { 𝐴 } ⊆ On ) |
9 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
10 |
9
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
11 |
|
0ss |
⊢ ∅ ⊆ On |
12 |
10 11
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } ⊆ On ) |
13 |
12
|
adantl |
⊢ ( ( Ord 𝐴 ∧ ¬ 𝐴 ∈ V ) → { 𝐴 } ⊆ On ) |
14 |
8 13
|
pm2.61dan |
⊢ ( Ord 𝐴 → { 𝐴 } ⊆ On ) |
15 |
5 14
|
unssd |
⊢ ( Ord 𝐴 → ( 𝐴 ∪ { 𝐴 } ) ⊆ On ) |
16 |
4 15
|
eqsstrid |
⊢ ( Ord 𝐴 → suc 𝐴 ⊆ On ) |
17 |
|
ordon |
⊢ Ord On |
18 |
17
|
a1i |
⊢ ( Ord 𝐴 → Ord On ) |
19 |
|
trssord |
⊢ ( ( Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On ) → Ord suc 𝐴 ) |
20 |
3 16 18 19
|
syl3anc |
⊢ ( Ord 𝐴 → Ord suc 𝐴 ) |