| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordtr | ⊢ ( Ord  𝐴  →  Tr  𝐴 ) | 
						
							| 2 |  | suctr | ⊢ ( Tr  𝐴  →  Tr  suc  𝐴 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( Ord  𝐴  →  Tr  suc  𝐴 ) | 
						
							| 4 |  | df-suc | ⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 5 |  | ordsson | ⊢ ( Ord  𝐴  →  𝐴  ⊆  On ) | 
						
							| 6 |  | elon2 | ⊢ ( 𝐴  ∈  On  ↔  ( Ord  𝐴  ∧  𝐴  ∈  V ) ) | 
						
							| 7 |  | snssi | ⊢ ( 𝐴  ∈  On  →  { 𝐴 }  ⊆  On ) | 
						
							| 8 | 6 7 | sylbir | ⊢ ( ( Ord  𝐴  ∧  𝐴  ∈  V )  →  { 𝐴 }  ⊆  On ) | 
						
							| 9 |  | snprc | ⊢ ( ¬  𝐴  ∈  V  ↔  { 𝐴 }  =  ∅ ) | 
						
							| 10 | 9 | biimpi | ⊢ ( ¬  𝐴  ∈  V  →  { 𝐴 }  =  ∅ ) | 
						
							| 11 |  | 0ss | ⊢ ∅  ⊆  On | 
						
							| 12 | 10 11 | eqsstrdi | ⊢ ( ¬  𝐴  ∈  V  →  { 𝐴 }  ⊆  On ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( Ord  𝐴  ∧  ¬  𝐴  ∈  V )  →  { 𝐴 }  ⊆  On ) | 
						
							| 14 | 8 13 | pm2.61dan | ⊢ ( Ord  𝐴  →  { 𝐴 }  ⊆  On ) | 
						
							| 15 | 5 14 | unssd | ⊢ ( Ord  𝐴  →  ( 𝐴  ∪  { 𝐴 } )  ⊆  On ) | 
						
							| 16 | 4 15 | eqsstrid | ⊢ ( Ord  𝐴  →  suc  𝐴  ⊆  On ) | 
						
							| 17 |  | ordon | ⊢ Ord  On | 
						
							| 18 | 17 | a1i | ⊢ ( Ord  𝐴  →  Ord  On ) | 
						
							| 19 |  | trssord | ⊢ ( ( Tr  suc  𝐴  ∧  suc  𝐴  ⊆  On  ∧  Ord  On )  →  Ord  suc  𝐴 ) | 
						
							| 20 | 3 16 18 19 | syl3anc | ⊢ ( Ord  𝐴  →  Ord  suc  𝐴 ) |