Metamath Proof Explorer


Theorem ordsucss

Description: The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998)

Ref Expression
Assertion ordsucss ( Ord 𝐵 → ( 𝐴𝐵 → suc 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ordelord ( ( Ord 𝐵𝐴𝐵 ) → Ord 𝐴 )
2 ordnbtwn ( Ord 𝐴 → ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )
3 imnan ( ( 𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ↔ ¬ ( 𝐴𝐵𝐵 ∈ suc 𝐴 ) )
4 2 3 sylibr ( Ord 𝐴 → ( 𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) )
5 4 adantr ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) )
6 ordsuc ( Ord 𝐴 ↔ Ord suc 𝐴 )
7 ordtri1 ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) )
8 6 7 sylanb ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) )
9 5 8 sylibrd ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
10 1 9 sylan ( ( ( Ord 𝐵𝐴𝐵 ) ∧ Ord 𝐵 ) → ( 𝐴𝐵 → suc 𝐴𝐵 ) )
11 10 exp31 ( Ord 𝐵 → ( 𝐴𝐵 → ( Ord 𝐵 → ( 𝐴𝐵 → suc 𝐴𝐵 ) ) ) )
12 11 pm2.43b ( 𝐴𝐵 → ( Ord 𝐵 → ( 𝐴𝐵 → suc 𝐴𝐵 ) ) )
13 12 pm2.43b ( Ord 𝐵 → ( 𝐴𝐵 → suc 𝐴𝐵 ) )