Step |
Hyp |
Ref |
Expression |
1 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
2 |
|
ordnbtwn |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
3 |
|
imnan |
⊢ ( ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ suc 𝐴 ) ) |
4 |
2 3
|
sylibr |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ) |
5 |
4
|
adantr |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ suc 𝐴 ) ) |
6 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
7 |
|
ordtri1 |
⊢ ( ( Ord suc 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
8 |
6 7
|
sylanb |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( suc 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ suc 𝐴 ) ) |
9 |
5 8
|
sylibrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
10 |
1 9
|
sylan |
⊢ ( ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |
11 |
10
|
exp31 |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) ) ) |
12 |
11
|
pm2.43b |
⊢ ( 𝐴 ∈ 𝐵 → ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) ) |
13 |
12
|
pm2.43b |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → suc 𝐴 ⊆ 𝐵 ) ) |