| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ordsucelsuc | 
							⊢ ( Ord  𝐴  →  ( 𝐵  ∈  𝐴  ↔  suc  𝐵  ∈  suc  𝐴 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							notbid | 
							⊢ ( Ord  𝐴  →  ( ¬  𝐵  ∈  𝐴  ↔  ¬  suc  𝐵  ∈  suc  𝐴 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( ¬  𝐵  ∈  𝐴  ↔  ¬  suc  𝐵  ∈  suc  𝐴 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ↔  ¬  𝐵  ∈  𝐴 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ordsuc | 
							⊢ ( Ord  𝐴  ↔  Ord  suc  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							ordsuc | 
							⊢ ( Ord  𝐵  ↔  Ord  suc  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							ordtri1 | 
							⊢ ( ( Ord  suc  𝐴  ∧  Ord  suc  𝐵 )  →  ( suc  𝐴  ⊆  suc  𝐵  ↔  ¬  suc  𝐵  ∈  suc  𝐴 ) )  | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							syl2anb | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( suc  𝐴  ⊆  suc  𝐵  ↔  ¬  suc  𝐵  ∈  suc  𝐴 ) )  | 
						
						
							| 9 | 
							
								3 4 8
							 | 
							3bitr4d | 
							⊢ ( ( Ord  𝐴  ∧  Ord  𝐵 )  →  ( 𝐴  ⊆  𝐵  ↔  suc  𝐴  ⊆  suc  𝐵 ) )  |