Step |
Hyp |
Ref |
Expression |
1 |
|
ordun |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) |
2 |
|
ordsuc |
⊢ ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord suc ( 𝐴 ∪ 𝐵 ) ) |
3 |
|
ordelon |
⊢ ( ( Ord suc ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) → 𝑥 ∈ On ) |
4 |
3
|
ex |
⊢ ( Ord suc ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
5 |
2 4
|
sylbi |
⊢ ( Ord ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
6 |
1 5
|
syl |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
7 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
8 |
|
ordsuc |
⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) |
9 |
|
ordun |
⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → Ord ( suc 𝐴 ∪ suc 𝐵 ) ) |
10 |
|
ordelon |
⊢ ( ( Ord ( suc 𝐴 ∪ suc 𝐵 ) ∧ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) → 𝑥 ∈ On ) |
11 |
10
|
ex |
⊢ ( Ord ( suc 𝐴 ∪ suc 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
12 |
9 11
|
syl |
⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
13 |
7 8 12
|
syl2anb |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
14 |
|
ordssun |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ) ) |
16 |
|
ordsssuc |
⊢ ( ( 𝑥 ∈ On ∧ Ord ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) ) |
17 |
1 16
|
sylan2 |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) ) |
18 |
|
ordsssuc |
⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) |
19 |
18
|
adantrr |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) |
20 |
|
ordsssuc |
⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐵 ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
21 |
20
|
adantrl |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
22 |
19 21
|
orbi12d |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) ) |
23 |
15 17 22
|
3bitr3d |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) ) |
24 |
|
elun |
⊢ ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) |
25 |
23 24
|
bitr4di |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) |
26 |
25
|
expcom |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ On → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) ) |
27 |
6 13 26
|
pm5.21ndd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) |
28 |
27
|
eqrdv |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |