| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordun |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) |
| 2 |
|
ordsuc |
⊢ ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord suc ( 𝐴 ∪ 𝐵 ) ) |
| 3 |
|
ordelon |
⊢ ( ( Ord suc ( 𝐴 ∪ 𝐵 ) ∧ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) → 𝑥 ∈ On ) |
| 4 |
3
|
ex |
⊢ ( Ord suc ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
| 5 |
2 4
|
sylbi |
⊢ ( Ord ( 𝐴 ∪ 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
| 6 |
1 5
|
syl |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) → 𝑥 ∈ On ) ) |
| 7 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
| 8 |
|
ordsuc |
⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) |
| 9 |
|
ordun |
⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → Ord ( suc 𝐴 ∪ suc 𝐵 ) ) |
| 10 |
|
ordelon |
⊢ ( ( Ord ( suc 𝐴 ∪ suc 𝐵 ) ∧ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) → 𝑥 ∈ On ) |
| 11 |
10
|
ex |
⊢ ( Ord ( suc 𝐴 ∪ suc 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
| 12 |
9 11
|
syl |
⊢ ( ( Ord suc 𝐴 ∧ Ord suc 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
| 13 |
7 8 12
|
syl2anb |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) → 𝑥 ∈ On ) ) |
| 14 |
|
ordssun |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ) ) |
| 16 |
|
ordsssuc |
⊢ ( ( 𝑥 ∈ On ∧ Ord ( 𝐴 ∪ 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) ) |
| 17 |
1 16
|
sylan2 |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ) ) |
| 18 |
|
ordsssuc |
⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) |
| 19 |
18
|
adantrr |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑥 ∈ suc 𝐴 ) ) |
| 20 |
|
ordsssuc |
⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐵 ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
| 21 |
20
|
adantrl |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
| 22 |
19 21
|
orbi12d |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) ) |
| 23 |
15 17 22
|
3bitr3d |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) ) |
| 24 |
|
elun |
⊢ ( 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ↔ ( 𝑥 ∈ suc 𝐴 ∨ 𝑥 ∈ suc 𝐵 ) ) |
| 25 |
23 24
|
bitr4di |
⊢ ( ( 𝑥 ∈ On ∧ ( Ord 𝐴 ∧ Ord 𝐵 ) ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) |
| 26 |
25
|
expcom |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ On → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) ) |
| 27 |
6 13 26
|
pm5.21ndd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝑥 ∈ suc ( 𝐴 ∪ 𝐵 ) ↔ 𝑥 ∈ ( suc 𝐴 ∪ suc 𝐵 ) ) ) |
| 28 |
27
|
eqrdv |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → suc ( 𝐴 ∪ 𝐵 ) = ( suc 𝐴 ∪ suc 𝐵 ) ) |