| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orduni |
⊢ ( Ord 𝐵 → Ord ∪ 𝐵 ) |
| 2 |
|
ordelord |
⊢ ( ( Ord ∪ 𝐵 ∧ 𝐴 ∈ ∪ 𝐵 ) → Ord 𝐴 ) |
| 3 |
2
|
ex |
⊢ ( Ord ∪ 𝐵 → ( 𝐴 ∈ ∪ 𝐵 → Ord 𝐴 ) ) |
| 4 |
1 3
|
syl |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 → Ord 𝐴 ) ) |
| 5 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵 ) → Ord suc 𝐴 ) |
| 6 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
| 7 |
5 6
|
sylibr |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
| 8 |
7
|
ex |
⊢ ( Ord 𝐵 → ( suc 𝐴 ∈ 𝐵 → Ord 𝐴 ) ) |
| 9 |
|
ordsson |
⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) |
| 10 |
|
ordunisssuc |
⊢ ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴 ) ) |
| 11 |
9 10
|
sylan |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴 ) ) |
| 12 |
|
ordtri1 |
⊢ ( ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵 ) ) |
| 13 |
1 12
|
sylan |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵 ) ) |
| 14 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord suc 𝐴 ) → ( 𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
| 15 |
6 14
|
sylan2b |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
| 16 |
11 13 15
|
3bitr3d |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ¬ 𝐴 ∈ ∪ 𝐵 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
| 17 |
16
|
con4bid |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
| 18 |
17
|
ex |
⊢ ( Ord 𝐵 → ( Ord 𝐴 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) ) |
| 19 |
4 8 18
|
pm5.21ndd |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |