Step |
Hyp |
Ref |
Expression |
1 |
|
orduni |
⊢ ( Ord 𝐵 → Ord ∪ 𝐵 ) |
2 |
|
ordelord |
⊢ ( ( Ord ∪ 𝐵 ∧ 𝐴 ∈ ∪ 𝐵 ) → Ord 𝐴 ) |
3 |
2
|
ex |
⊢ ( Ord ∪ 𝐵 → ( 𝐴 ∈ ∪ 𝐵 → Ord 𝐴 ) ) |
4 |
1 3
|
syl |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 → Ord 𝐴 ) ) |
5 |
|
ordelord |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵 ) → Ord suc 𝐴 ) |
6 |
|
ordsuc |
⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) |
7 |
5 6
|
sylibr |
⊢ ( ( Ord 𝐵 ∧ suc 𝐴 ∈ 𝐵 ) → Ord 𝐴 ) |
8 |
7
|
ex |
⊢ ( Ord 𝐵 → ( suc 𝐴 ∈ 𝐵 → Ord 𝐴 ) ) |
9 |
|
ordsson |
⊢ ( Ord 𝐵 → 𝐵 ⊆ On ) |
10 |
|
ordunisssuc |
⊢ ( ( 𝐵 ⊆ On ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴 ) ) |
11 |
9 10
|
sylan |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ suc 𝐴 ) ) |
12 |
|
ordtri1 |
⊢ ( ( Ord ∪ 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵 ) ) |
13 |
1 12
|
sylan |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ∪ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ∪ 𝐵 ) ) |
14 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord suc 𝐴 ) → ( 𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
15 |
6 14
|
sylan2b |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ suc 𝐴 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
16 |
11 13 15
|
3bitr3d |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ¬ 𝐴 ∈ ∪ 𝐵 ↔ ¬ suc 𝐴 ∈ 𝐵 ) ) |
17 |
16
|
con4bid |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |
18 |
17
|
ex |
⊢ ( Ord 𝐵 → ( Ord 𝐴 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) ) |
19 |
4 8 18
|
pm5.21ndd |
⊢ ( Ord 𝐵 → ( 𝐴 ∈ ∪ 𝐵 ↔ suc 𝐴 ∈ 𝐵 ) ) |