| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtval.1 |
⊢ 𝑋 = dom 𝑅 |
| 2 |
|
ordtval.2 |
⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 3 |
|
3anrot |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
| 4 |
1
|
tsrlemax |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 5 |
3 4
|
sylan2br |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 6 |
5
|
3exp2 |
⊢ ( 𝑅 ∈ TosetRel → ( 𝑎 ∈ 𝑋 → ( 𝑏 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) ) ) ) |
| 7 |
6
|
imp42 |
⊢ ( ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 8 |
7
|
notbid |
⊢ ( ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ¬ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ) ) |
| 9 |
|
ioran |
⊢ ( ¬ ( 𝑦 𝑅 𝑎 ∨ 𝑦 𝑅 𝑏 ) ↔ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) ) |
| 10 |
8 9
|
bitrdi |
⊢ ( ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑦 ∈ 𝑋 ) → ( ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ↔ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) ) ) |
| 11 |
10
|
rabbidva |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ) |
| 12 |
|
ifcl |
⊢ ( ( 𝑏 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋 ) → if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ) |
| 13 |
12
|
ancoms |
⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ) |
| 14 |
|
dmexg |
⊢ ( 𝑅 ∈ TosetRel → dom 𝑅 ∈ V ) |
| 15 |
1 14
|
eqeltrid |
⊢ ( 𝑅 ∈ TosetRel → 𝑋 ∈ V ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑋 ∈ V ) |
| 17 |
|
rabexg |
⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ V ) |
| 18 |
16 17
|
syl |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ V ) |
| 19 |
11 18
|
eqeltrd |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ V ) |
| 20 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
| 21 |
|
breq2 |
⊢ ( 𝑥 = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ) ) |
| 22 |
21
|
notbid |
⊢ ( 𝑥 = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ) ) |
| 23 |
22
|
rabbidv |
⊢ ( 𝑥 = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ) |
| 24 |
20 23
|
elrnmpt1s |
⊢ ( ( if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ V ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
| 25 |
24 2
|
eleqtrrdi |
⊢ ( ( if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) ∈ 𝑋 ∧ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ V ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ 𝐴 ) |
| 26 |
13 19 25
|
syl2an2 |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑎 ) } ∈ 𝐴 ) |
| 27 |
11 26
|
eqeltrrd |
⊢ ( ( 𝑅 ∈ TosetRel ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) |
| 28 |
27
|
ralrimivva |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) |
| 29 |
|
rabexg |
⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) |
| 30 |
15 29
|
syl |
⊢ ( 𝑅 ∈ TosetRel → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) |
| 31 |
30
|
ralrimivw |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑎 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V ) |
| 32 |
|
breq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑎 ) ) |
| 33 |
32
|
notbid |
⊢ ( 𝑥 = 𝑎 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑎 ) ) |
| 34 |
33
|
rabbidv |
⊢ ( 𝑥 = 𝑎 → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 35 |
34
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑎 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ) |
| 36 |
|
ineq1 |
⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) = ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ) |
| 37 |
|
inrab |
⊢ ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } |
| 38 |
36 37
|
eqtrdi |
⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) = { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ) |
| 39 |
38
|
eleq1d |
⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 40 |
39
|
ralbidv |
⊢ ( 𝑧 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } → ( ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 41 |
35 40
|
ralrnmptw |
⊢ ( ∀ 𝑎 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑎 } ∈ V → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 42 |
31 41
|
syl |
⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ( ¬ 𝑦 𝑅 𝑎 ∧ ¬ 𝑦 𝑅 𝑏 ) } ∈ 𝐴 ) ) |
| 43 |
28 42
|
mpbird |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) |
| 44 |
|
rabexg |
⊢ ( 𝑋 ∈ V → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V ) |
| 45 |
15 44
|
syl |
⊢ ( 𝑅 ∈ TosetRel → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V ) |
| 46 |
45
|
ralrimivw |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V ) |
| 47 |
|
breq2 |
⊢ ( 𝑥 = 𝑏 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑏 ) ) |
| 48 |
47
|
notbid |
⊢ ( 𝑥 = 𝑏 → ( ¬ 𝑦 𝑅 𝑥 ↔ ¬ 𝑦 𝑅 𝑏 ) ) |
| 49 |
48
|
rabbidv |
⊢ ( 𝑥 = 𝑏 → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) |
| 50 |
49
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ( 𝑏 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) |
| 51 |
|
ineq2 |
⊢ ( 𝑤 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } → ( 𝑧 ∩ 𝑤 ) = ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ) |
| 52 |
51
|
eleq1d |
⊢ ( 𝑤 = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } → ( ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 53 |
50 52
|
ralrnmptw |
⊢ ( ∀ 𝑏 ∈ 𝑋 { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ∈ V → ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 54 |
46 53
|
syl |
⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 55 |
54
|
ralbidv |
⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑏 ∈ 𝑋 ( 𝑧 ∩ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑏 } ) ∈ 𝐴 ) ) |
| 56 |
43 55
|
mpbird |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 57 |
2
|
raleqi |
⊢ ( ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 58 |
2 57
|
raleqbii |
⊢ ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ∀ 𝑧 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∀ 𝑤 ∈ ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 59 |
56 58
|
sylibr |
⊢ ( 𝑅 ∈ TosetRel → ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ) |
| 60 |
15
|
pwexd |
⊢ ( 𝑅 ∈ TosetRel → 𝒫 𝑋 ∈ V ) |
| 61 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 |
| 62 |
15
|
adantr |
⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ V ) |
| 63 |
|
elpw2g |
⊢ ( 𝑋 ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) |
| 64 |
62 63
|
syl |
⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) |
| 65 |
61 64
|
mpbiri |
⊢ ( ( 𝑅 ∈ TosetRel ∧ 𝑥 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ) |
| 66 |
65
|
fmpttd |
⊢ ( 𝑅 ∈ TosetRel → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
| 67 |
66
|
frnd |
⊢ ( 𝑅 ∈ TosetRel → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ⊆ 𝒫 𝑋 ) |
| 68 |
2 67
|
eqsstrid |
⊢ ( 𝑅 ∈ TosetRel → 𝐴 ⊆ 𝒫 𝑋 ) |
| 69 |
60 68
|
ssexd |
⊢ ( 𝑅 ∈ TosetRel → 𝐴 ∈ V ) |
| 70 |
|
inficl |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) |
| 71 |
69 70
|
syl |
⊢ ( 𝑅 ∈ TosetRel → ( ∀ 𝑧 ∈ 𝐴 ∀ 𝑤 ∈ 𝐴 ( 𝑧 ∩ 𝑤 ) ∈ 𝐴 ↔ ( fi ‘ 𝐴 ) = 𝐴 ) ) |
| 72 |
59 71
|
mpbid |
⊢ ( 𝑅 ∈ TosetRel → ( fi ‘ 𝐴 ) = 𝐴 ) |