Metamath Proof Explorer


Theorem ordtcld3

Description: A closed interval [ A , B ] is closed. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Hypothesis ordttopon.3 𝑋 = dom 𝑅
Assertion ordtcld3 ( ( 𝑅𝑉𝐴𝑋𝐵𝑋 ) → { 𝑥𝑋 ∣ ( 𝐴 𝑅 𝑥𝑥 𝑅 𝐵 ) } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 ordttopon.3 𝑋 = dom 𝑅
2 inrab ( { 𝑥𝑋𝐴 𝑅 𝑥 } ∩ { 𝑥𝑋𝑥 𝑅 𝐵 } ) = { 𝑥𝑋 ∣ ( 𝐴 𝑅 𝑥𝑥 𝑅 𝐵 ) }
3 1 ordtcld2 ( ( 𝑅𝑉𝐴𝑋 ) → { 𝑥𝑋𝐴 𝑅 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )
4 3 3adant3 ( ( 𝑅𝑉𝐴𝑋𝐵𝑋 ) → { 𝑥𝑋𝐴 𝑅 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )
5 1 ordtcld1 ( ( 𝑅𝑉𝐵𝑋 ) → { 𝑥𝑋𝑥 𝑅 𝐵 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )
6 incld ( ( { 𝑥𝑋𝐴 𝑅 𝑥 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ∧ { 𝑥𝑋𝑥 𝑅 𝐵 } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) ) → ( { 𝑥𝑋𝐴 𝑅 𝑥 } ∩ { 𝑥𝑋𝑥 𝑅 𝐵 } ) ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )
7 4 5 6 3imp3i2an ( ( 𝑅𝑉𝐴𝑋𝐵𝑋 ) → ( { 𝑥𝑋𝐴 𝑅 𝑥 } ∩ { 𝑥𝑋𝑥 𝑅 𝐵 } ) ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )
8 2 7 eqeltrrid ( ( 𝑅𝑉𝐴𝑋𝐵𝑋 ) → { 𝑥𝑋 ∣ ( 𝐴 𝑅 𝑥𝑥 𝑅 𝐵 ) } ∈ ( Clsd ‘ ( ordTop ‘ 𝑅 ) ) )