Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ dom 𝑅 = dom 𝑅 |
2 |
1
|
psrn |
⊢ ( 𝑅 ∈ PosetRel → dom 𝑅 = ran 𝑅 ) |
3 |
2
|
eqcomd |
⊢ ( 𝑅 ∈ PosetRel → ran 𝑅 = dom 𝑅 ) |
4 |
3
|
sneqd |
⊢ ( 𝑅 ∈ PosetRel → { ran 𝑅 } = { dom 𝑅 } ) |
5 |
|
vex |
⊢ 𝑦 ∈ V |
6 |
|
vex |
⊢ 𝑥 ∈ V |
7 |
5 6
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
8 |
7
|
a1i |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
9 |
8
|
notbid |
⊢ ( 𝑅 ∈ PosetRel → ( ¬ 𝑦 ◡ 𝑅 𝑥 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
10 |
3 9
|
rabeqbidv |
⊢ ( 𝑅 ∈ PosetRel → { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } = { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
11 |
3 10
|
mpteq12dv |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
12 |
11
|
rneqd |
⊢ ( 𝑅 ∈ PosetRel → ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
13 |
6 5
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
14 |
13
|
a1i |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) ) |
15 |
14
|
notbid |
⊢ ( 𝑅 ∈ PosetRel → ( ¬ 𝑥 ◡ 𝑅 𝑦 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
16 |
3 15
|
rabeqbidv |
⊢ ( 𝑅 ∈ PosetRel → { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } = { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
17 |
3 16
|
mpteq12dv |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) = ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
18 |
17
|
rneqd |
⊢ ( 𝑅 ∈ PosetRel → ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
19 |
12 18
|
uneq12d |
⊢ ( 𝑅 ∈ PosetRel → ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) = ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) ) |
20 |
|
uncom |
⊢ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) = ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
21 |
19 20
|
eqtrdi |
⊢ ( 𝑅 ∈ PosetRel → ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) = ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) |
22 |
4 21
|
uneq12d |
⊢ ( 𝑅 ∈ PosetRel → ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) = ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝑅 ∈ PosetRel → ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) = ( fi ‘ ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑅 ∈ PosetRel → ( topGen ‘ ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
25 |
|
cnvps |
⊢ ( 𝑅 ∈ PosetRel → ◡ 𝑅 ∈ PosetRel ) |
26 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
27 |
|
eqid |
⊢ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) |
28 |
|
eqid |
⊢ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) = ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) |
29 |
26 27 28
|
ordtval |
⊢ ( ◡ 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) ) ) |
30 |
25 29
|
syl |
⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { ran 𝑅 } ∪ ( ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑦 ◡ 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ ran 𝑅 ↦ { 𝑦 ∈ ran 𝑅 ∣ ¬ 𝑥 ◡ 𝑅 𝑦 } ) ) ) ) ) ) |
31 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
32 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) = ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
33 |
1 31 32
|
ordtval |
⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { dom 𝑅 } ∪ ( ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑦 𝑅 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑅 ↦ { 𝑦 ∈ dom 𝑅 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) ) ) ) ) |
34 |
24 30 33
|
3eqtr4d |
⊢ ( 𝑅 ∈ PosetRel → ( ordTop ‘ ◡ 𝑅 ) = ( ordTop ‘ 𝑅 ) ) |