| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ordtNEW.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ordtNEW.l | 
							⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							brcnv | 
							⊢ ( 𝑦 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑦 )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝐾  ∈   Proset   →  ( 𝑦 ◡  ≤  𝑥  ↔  𝑥  ≤  𝑦 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							notbid | 
							⊢ ( 𝐾  ∈   Proset   →  ( ¬  𝑦 ◡  ≤  𝑥  ↔  ¬  𝑥  ≤  𝑦 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rabbidv | 
							⊢ ( 𝐾  ∈   Proset   →  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  | 
						
						
							| 9 | 
							
								8
							 | 
							mpteq2dv | 
							⊢ ( 𝐾  ∈   Proset   →  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  =  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							rneqd | 
							⊢ ( 𝐾  ∈   Proset   →  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) )  | 
						
						
							| 11 | 
							
								4 3
							 | 
							brcnv | 
							⊢ ( 𝑥 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑥 )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝐾  ∈   Proset   →  ( 𝑥 ◡  ≤  𝑦  ↔  𝑦  ≤  𝑥 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							notbid | 
							⊢ ( 𝐾  ∈   Proset   →  ( ¬  𝑥 ◡  ≤  𝑦  ↔  ¬  𝑦  ≤  𝑥 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							rabbidv | 
							⊢ ( 𝐾  ∈   Proset   →  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 }  =  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  | 
						
						
							| 15 | 
							
								14
							 | 
							mpteq2dv | 
							⊢ ( 𝐾  ∈   Proset   →  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  =  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rneqd | 
							⊢ ( 𝐾  ∈   Proset   →  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							uneq12d | 
							⊢ ( 𝐾  ∈   Proset   →  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) )  =  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							uncom | 
							⊢ ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } ) )  =  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							eqtrdi | 
							⊢ ( 𝐾  ∈   Proset   →  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) )  =  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							uneq2d | 
							⊢ ( 𝐾  ∈   Proset   →  ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) )  =  ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq2d | 
							⊢ ( 𝐾  ∈   Proset   →  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) )  =  ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							fveq2d | 
							⊢ ( 𝐾  ∈   Proset   →  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) ) )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( ODual ‘ 𝐾 )  =  ( ODual ‘ 𝐾 )  | 
						
						
							| 24 | 
							
								23
							 | 
							oduprs | 
							⊢ ( 𝐾  ∈   Proset   →  ( ODual ‘ 𝐾 )  ∈   Proset  )  | 
						
						
							| 25 | 
							
								23 1
							 | 
							odubas | 
							⊢ 𝐵  =  ( Base ‘ ( ODual ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								2
							 | 
							cnveqi | 
							⊢ ◡  ≤   =  ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							cnvin | 
							⊢ ◡ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  =  ( ◡ ( le ‘ 𝐾 )  ∩  ◡ ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 29 | 
							
								23 28
							 | 
							oduleval | 
							⊢ ◡ ( le ‘ 𝐾 )  =  ( le ‘ ( ODual ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							cnvxp | 
							⊢ ◡ ( 𝐵  ×  𝐵 )  =  ( 𝐵  ×  𝐵 )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							ineq12i | 
							⊢ ( ◡ ( le ‘ 𝐾 )  ∩  ◡ ( 𝐵  ×  𝐵 ) )  =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 32 | 
							
								26 27 31
							 | 
							3eqtri | 
							⊢ ◡  ≤   =  ( ( le ‘ ( ODual ‘ 𝐾 ) )  ∩  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  | 
						
						
							| 34 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } )  | 
						
						
							| 35 | 
							
								25 32 33 34
							 | 
							ordtprsval | 
							⊢ ( ( ODual ‘ 𝐾 )  ∈   Proset   →  ( ordTop ‘ ◡  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) ) ) )  | 
						
						
							| 36 | 
							
								24 35
							 | 
							syl | 
							⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘ ◡  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦 ◡  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥 ◡  ≤  𝑦 } ) ) ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  | 
						
						
							| 38 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  =  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } )  | 
						
						
							| 39 | 
							
								1 2 37 38
							 | 
							ordtprsval | 
							⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘  ≤  )  =  ( topGen ‘ ( fi ‘ ( { 𝐵 }  ∪  ( ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑦  ≤  𝑥 } )  ∪  ran  ( 𝑥  ∈  𝐵  ↦  { 𝑦  ∈  𝐵  ∣  ¬  𝑥  ≤  𝑦 } ) ) ) ) ) )  | 
						
						
							| 40 | 
							
								22 36 39
							 | 
							3eqtr4d | 
							⊢ ( 𝐾  ∈   Proset   →  ( ordTop ‘ ◡  ≤  )  =  ( ordTop ‘  ≤  ) )  |