Step |
Hyp |
Ref |
Expression |
1 |
|
ordtconn.x |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
ordtconn.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
3 |
|
ordtconn.j |
⊢ 𝐽 = ( ordTop ‘ ≤ ) |
4 |
|
nfv |
⊢ Ⅎ 𝑟 ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑟 𝐴 |
6 |
|
nfra2w |
⊢ Ⅎ 𝑟 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) |
7 |
5 6
|
nfralw |
⊢ Ⅎ 𝑟 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) |
8 |
7
|
nfn |
⊢ Ⅎ 𝑟 ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) |
9 |
4 8
|
nfan |
⊢ Ⅎ 𝑟 ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
10 |
|
tospos |
⊢ ( 𝐾 ∈ Toset → 𝐾 ∈ Poset ) |
11 |
|
posprs |
⊢ ( 𝐾 ∈ Poset → 𝐾 ∈ Proset ) |
12 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
13 |
12
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
14 |
2 13
|
eqeltri |
⊢ ≤ ∈ V |
15 |
|
eqid |
⊢ dom ≤ = dom ≤ |
16 |
15
|
ordttopon |
⊢ ( ≤ ∈ V → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) ) |
17 |
14 16
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ dom ≤ ) |
18 |
1 2
|
prsdm |
⊢ ( 𝐾 ∈ Proset → dom ≤ = 𝐵 ) |
19 |
18
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( TopOn ‘ dom ≤ ) = ( TopOn ‘ 𝐵 ) ) |
20 |
17 19
|
eleqtrid |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) ∈ ( TopOn ‘ 𝐵 ) ) |
21 |
3 20
|
eqeltrid |
⊢ ( 𝐾 ∈ Proset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
22 |
10 11 21
|
3syl |
⊢ ( 𝐾 ∈ Toset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
23 |
22
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
24 |
23
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
25 |
|
simpllr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
26 |
25
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
27 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → 𝐾 ∈ Toset ) |
28 |
|
snex |
⊢ { 𝐵 } ∈ V |
29 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
30 |
29
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∈ V |
31 |
30
|
rnex |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∈ V |
32 |
29
|
mptex |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ∈ V |
33 |
32
|
rnex |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ∈ V |
34 |
31 33
|
unex |
⊢ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ∈ V |
35 |
28 34
|
unex |
⊢ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ∈ V |
36 |
|
ssfii |
⊢ ( ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ∈ V → ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
37 |
35 36
|
ax-mp |
⊢ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) |
38 |
|
fvex |
⊢ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ∈ V |
39 |
|
bastg |
⊢ ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ∈ V → ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
40 |
38 39
|
ax-mp |
⊢ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
41 |
37 40
|
sstri |
⊢ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
42 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
43 |
|
eqid |
⊢ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
44 |
1 2 42 43
|
ordtprsval |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
45 |
3 44
|
eqtrid |
⊢ ( 𝐾 ∈ Proset → 𝐽 = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
46 |
41 45
|
sseqtrrid |
⊢ ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ⊆ 𝐽 ) |
47 |
46
|
unssbd |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ⊆ 𝐽 ) |
48 |
27 10 11 47
|
4syl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ⊆ 𝐽 ) |
49 |
48
|
unssbd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ⊆ 𝐽 ) |
50 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑟 ≤ 𝑧 ↔ 𝑟 ≤ 𝑦 ) ) |
51 |
50
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑟 ≤ 𝑧 ↔ ¬ 𝑟 ≤ 𝑦 ) ) |
52 |
51
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦 } |
53 |
|
breq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 ≤ 𝑦 ↔ 𝑟 ≤ 𝑦 ) ) |
54 |
53
|
notbid |
⊢ ( 𝑥 = 𝑟 → ( ¬ 𝑥 ≤ 𝑦 ↔ ¬ 𝑟 ≤ 𝑦 ) ) |
55 |
54
|
rabbidv |
⊢ ( 𝑥 = 𝑟 → { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦 } ) |
56 |
55
|
rspceeqv |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑦 } ) → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
57 |
52 56
|
mpan2 |
⊢ ( 𝑟 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
58 |
29
|
rabex |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ V |
59 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
60 |
59
|
elrnmpt |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ V → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
61 |
58 60
|
ax-mp |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
62 |
57 61
|
sylibr |
⊢ ( 𝑟 ∈ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
63 |
62
|
adantl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
64 |
49 63
|
sseldd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ 𝐽 ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∈ 𝐽 ) |
66 |
48
|
unssad |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ⊆ 𝐽 ) |
67 |
|
breq1 |
⊢ ( 𝑧 = 𝑦 → ( 𝑧 ≤ 𝑟 ↔ 𝑦 ≤ 𝑟 ) ) |
68 |
67
|
notbid |
⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑧 ≤ 𝑟 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
69 |
68
|
cbvrabv |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟 } |
70 |
|
breq2 |
⊢ ( 𝑥 = 𝑟 → ( 𝑦 ≤ 𝑥 ↔ 𝑦 ≤ 𝑟 ) ) |
71 |
70
|
notbid |
⊢ ( 𝑥 = 𝑟 → ( ¬ 𝑦 ≤ 𝑥 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
72 |
71
|
rabbidv |
⊢ ( 𝑥 = 𝑟 → { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟 } ) |
73 |
72
|
rspceeqv |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑟 } ) → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
74 |
69 73
|
mpan2 |
⊢ ( 𝑟 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
75 |
29
|
rabex |
⊢ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ V |
76 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
77 |
76
|
elrnmpt |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ V → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
78 |
75 77
|
ax-mp |
⊢ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ↔ ∃ 𝑥 ∈ 𝐵 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
79 |
74 78
|
sylibr |
⊢ ( 𝑟 ∈ 𝐵 → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
80 |
79
|
adantl |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
81 |
66 80
|
sseldd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ 𝐽 ) |
82 |
81
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∈ 𝐽 ) |
83 |
|
simpll |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ) |
84 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
85 |
83 84
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
86 |
|
simplrl |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ) |
87 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
88 |
87
|
ancrd |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) ) |
89 |
88
|
anim1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑟 ≤ 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) ) |
90 |
89
|
impl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
91 |
|
elin |
⊢ ( 𝑥 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑥 ∈ 𝐴 ) ) |
92 |
|
breq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑟 ≤ 𝑧 ↔ 𝑟 ≤ 𝑥 ) ) |
93 |
92
|
notbid |
⊢ ( 𝑧 = 𝑥 → ( ¬ 𝑟 ≤ 𝑧 ↔ ¬ 𝑟 ≤ 𝑥 ) ) |
94 |
93
|
elrab |
⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ↔ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
95 |
94
|
anbi1i |
⊢ ( ( 𝑥 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥 ) ∧ 𝑥 ∈ 𝐴 ) ) |
96 |
|
an32 |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑥 ) ∧ 𝑥 ∈ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
97 |
91 95 96
|
3bitri |
⊢ ( 𝑥 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) ) |
98 |
90 97
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → 𝑥 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ) |
99 |
98
|
ne0d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
100 |
25 99
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ 𝑥 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
101 |
100
|
r19.29an |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
102 |
85 86 101
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ 𝐴 ) ≠ ∅ ) |
103 |
|
simplrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) |
104 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ 𝐵 ) ) |
105 |
104
|
ancrd |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑦 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) ) |
106 |
105
|
anim1d |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ≤ 𝑟 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) ) |
107 |
106
|
impl |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
108 |
|
elin |
⊢ ( 𝑦 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ↔ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∧ 𝑦 ∈ 𝐴 ) ) |
109 |
68
|
elrab |
⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ↔ ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
110 |
109
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∧ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟 ) ∧ 𝑦 ∈ 𝐴 ) ) |
111 |
|
an32 |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ≤ 𝑟 ) ∧ 𝑦 ∈ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
112 |
108 110 111
|
3bitri |
⊢ ( 𝑦 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) ) |
113 |
107 112
|
sylibr |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → 𝑦 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ) |
114 |
113
|
ne0d |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
115 |
25 114
|
sylanl1 |
⊢ ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑦 ≤ 𝑟 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
116 |
115
|
r19.29an |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
117 |
85 103 116
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ∩ 𝐴 ) ≠ ∅ ) |
118 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑟 ≤ 𝑧 ∨ 𝑧 ≤ 𝑟 ) ) |
119 |
|
oran |
⊢ ( ( 𝑟 ≤ 𝑧 ∨ 𝑧 ≤ 𝑟 ) ↔ ¬ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
120 |
118 119
|
sylib |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ¬ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
121 |
120
|
3expa |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ) ∧ 𝑧 ∈ 𝐵 ) → ¬ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
122 |
121
|
nrexdv |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ) → ¬ ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
123 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ) |
124 |
|
rabid |
⊢ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ↔ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
125 |
123 124
|
anbi12i |
⊢ ( ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
126 |
|
elin |
⊢ ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∧ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
127 |
|
anandi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∧ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
128 |
125 126 127
|
3bitr4i |
⊢ ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
129 |
128
|
exbii |
⊢ ( ∃ 𝑧 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
130 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } |
131 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } |
132 |
130 131
|
nfin |
⊢ Ⅎ 𝑧 ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) |
133 |
132
|
n0f |
⊢ ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
134 |
|
df-rex |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ↔ ∃ 𝑧 ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
135 |
129 133 134
|
3bitr4i |
⊢ ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ) |
136 |
135
|
necon1bbii |
⊢ ( ¬ ∃ 𝑧 ∈ 𝐵 ( ¬ 𝑟 ≤ 𝑧 ∧ ¬ 𝑧 ≤ 𝑟 ) ↔ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
137 |
122 136
|
sylib |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
138 |
137
|
adantlr |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
139 |
138
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ∅ ) |
140 |
139
|
ineq1d |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) ) |
141 |
|
0in |
⊢ ( ∅ ∩ 𝐴 ) = ∅ |
142 |
140 141
|
eqtrdi |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ∩ 𝐴 ) = ∅ ) |
143 |
142
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∩ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ∩ 𝐴 ) = ∅ ) |
144 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
145 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
146 |
|
vex |
⊢ 𝑟 ∈ V |
147 |
146
|
snss |
⊢ ( 𝑟 ∈ 𝐵 ↔ { 𝑟 } ⊆ 𝐵 ) |
148 |
|
eldif |
⊢ ( 𝑟 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
149 |
146
|
snss |
⊢ ( 𝑟 ∈ ( 𝐵 ∖ 𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵 ∖ 𝐴 ) ) |
150 |
148 149
|
bitr3i |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵 ∖ 𝐴 ) ) |
151 |
|
ssconb |
⊢ ( ( { 𝑟 } ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( { 𝑟 } ⊆ ( 𝐵 ∖ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
152 |
150 151
|
bitrid |
⊢ ( ( { 𝑟 } ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
153 |
147 152
|
sylanb |
⊢ ( ( 𝑟 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
154 |
153
|
adantl |
⊢ ( ( 𝐾 ∈ Toset ∧ ( 𝑟 ∈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
155 |
154
|
anass1rs |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
156 |
155
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( 𝑟 ∈ 𝐵 ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) ) |
157 |
144 145 156
|
mpbi2and |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) |
158 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
159 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) |
160 |
130 131
|
nfun |
⊢ Ⅎ 𝑧 ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) |
161 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝐵 ∖ { 𝑟 } ) |
162 |
|
ianor |
⊢ ( ¬ ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) |
163 |
1 2
|
posrasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ 𝑟 = 𝑧 ) ) |
164 |
|
equcom |
⊢ ( 𝑟 = 𝑧 ↔ 𝑧 = 𝑟 ) |
165 |
163 164
|
bitrdi |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ 𝑧 = 𝑟 ) ) |
166 |
165
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ¬ ( 𝑟 ≤ 𝑧 ∧ 𝑧 ≤ 𝑟 ) ↔ 𝑧 ≠ 𝑟 ) ) |
167 |
162 166
|
bitr3id |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ↔ 𝑧 ≠ 𝑟 ) ) |
168 |
167
|
3expia |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( 𝑧 ∈ 𝐵 → ( ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ↔ 𝑧 ≠ 𝑟 ) ) ) |
169 |
168
|
pm5.32d |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟 ) ) ) |
170 |
123 124
|
orbi12i |
⊢ ( ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∨ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∨ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
171 |
|
elun |
⊢ ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∨ 𝑧 ∈ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
172 |
|
andi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑟 ≤ 𝑧 ) ∨ ( 𝑧 ∈ 𝐵 ∧ ¬ 𝑧 ≤ 𝑟 ) ) ) |
173 |
170 171 172
|
3bitr4ri |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ ( ¬ 𝑟 ≤ 𝑧 ∨ ¬ 𝑧 ≤ 𝑟 ) ) ↔ 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
174 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟 ) ) |
175 |
174
|
bicomi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑧 ≠ 𝑟 ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ) |
176 |
169 173 175
|
3bitr3g |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( 𝑧 ∈ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ) ) |
177 |
159 160 161 176
|
eqrd |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) ) |
178 |
158 144 177
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) ) |
179 |
157 178
|
sseqtrrd |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
180 |
179
|
adantlr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝐴 ⊆ ( { 𝑧 ∈ 𝐵 ∣ ¬ 𝑟 ≤ 𝑧 } ∪ { 𝑧 ∈ 𝐵 ∣ ¬ 𝑧 ≤ 𝑟 } ) ) |
181 |
24 26 65 82 102 117 143 180
|
nconnsubb |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
182 |
181
|
anasss |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
183 |
182
|
adantllr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) ∧ 𝑟 ∈ 𝐵 ) ∧ ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
184 |
|
rexanali |
⊢ ( ∃ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
185 |
184
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 ¬ ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
186 |
|
rexcom |
⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
187 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
188 |
185 186 187
|
3bitr3i |
⊢ ( ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
189 |
188
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
190 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑟 ∈ 𝐵 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
191 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
192 |
189 190 191
|
3bitr3i |
⊢ ( ∃ 𝑟 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) |
193 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
194 |
193
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
195 |
|
r19.41v |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
196 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ) |
197 |
196
|
anbi1i |
⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
198 |
194 195 197
|
3bitri |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
199 |
198
|
rexbii |
⊢ ( ∃ 𝑟 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
200 |
192 199
|
bitr3i |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
201 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Toset ) |
202 |
25
|
sselda |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
203 |
|
simpllr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
204 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ) |
205 |
201 202 203 204
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ) |
206 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
207 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
208 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝑥 ≠ 𝑟 ) |
209 |
206 207 208
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ 𝑟 ) |
210 |
158
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
211 |
1 2
|
posrasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ↔ 𝑥 = 𝑟 ) ) |
212 |
211
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑥 ∈ 𝐵 ∧ 𝑟 ∈ 𝐵 ) → ( ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ↔ 𝑥 ≠ 𝑟 ) ) |
213 |
210 202 203 212
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ↔ 𝑥 ≠ 𝑟 ) ) |
214 |
209 213
|
mpbird |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ) |
215 |
205 214
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ∧ ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ) ) |
216 |
|
pm5.17 |
⊢ ( ( ( 𝑥 ≤ 𝑟 ∨ 𝑟 ≤ 𝑥 ) ∧ ¬ ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑥 ) ) ↔ ( 𝑥 ≤ 𝑟 ↔ ¬ 𝑟 ≤ 𝑥 ) ) |
217 |
215 216
|
sylib |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑟 ↔ ¬ 𝑟 ≤ 𝑥 ) ) |
218 |
217
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ↔ ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ) ) |
219 |
27
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Toset ) |
220 |
|
simpllr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑟 ∈ 𝐵 ) |
221 |
25
|
sselda |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
222 |
1 2
|
trleile |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ) |
223 |
219 220 221 222
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ) |
224 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) |
225 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ¬ 𝑟 ∈ 𝐴 ) |
226 |
|
nelne2 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑟 ∈ 𝐴 ) → 𝑦 ≠ 𝑟 ) |
227 |
224 225 226
|
syl2anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ≠ 𝑟 ) |
228 |
227
|
necomd |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑟 ≠ 𝑦 ) |
229 |
158
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
230 |
1 2
|
posrasymb |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ↔ 𝑟 = 𝑦 ) ) |
231 |
230
|
necon3bbid |
⊢ ( ( 𝐾 ∈ Poset ∧ 𝑟 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ↔ 𝑟 ≠ 𝑦 ) ) |
232 |
229 220 221 231
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ↔ 𝑟 ≠ 𝑦 ) ) |
233 |
228 232
|
mpbird |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ) |
234 |
223 233
|
jca |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ∧ ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ) ) |
235 |
|
pm5.17 |
⊢ ( ( ( 𝑟 ≤ 𝑦 ∨ 𝑦 ≤ 𝑟 ) ∧ ¬ ( 𝑟 ≤ 𝑦 ∧ 𝑦 ≤ 𝑟 ) ) ↔ ( 𝑟 ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
236 |
234 235
|
sylib |
⊢ ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑟 ≤ 𝑦 ↔ ¬ 𝑦 ≤ 𝑟 ) ) |
237 |
236
|
rexbidva |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) |
238 |
218 237
|
anbi12d |
⊢ ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) ∧ ¬ 𝑟 ∈ 𝐴 ) → ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ) |
239 |
238
|
ex |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ¬ 𝑟 ∈ 𝐴 → ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ) ) ) |
240 |
239
|
pm5.32rd |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ 𝑟 ∈ 𝐵 ) → ( ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) ) |
241 |
240
|
rexbidva |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑟 ∧ ∃ 𝑦 ∈ 𝐴 𝑟 ≤ 𝑦 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) ) |
242 |
200 241
|
bitrid |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ↔ ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) ) |
243 |
242
|
biimpa |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) → ∃ 𝑟 ∈ 𝐵 ( ( ∃ 𝑥 ∈ 𝐴 ¬ 𝑟 ≤ 𝑥 ∧ ∃ 𝑦 ∈ 𝐴 ¬ 𝑦 ≤ 𝑟 ) ∧ ¬ 𝑟 ∈ 𝐴 ) ) |
244 |
9 183 243
|
r19.29af |
⊢ ( ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) ∧ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) |
245 |
244
|
ex |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) ∈ Conn ) ) |
246 |
245
|
con4d |
⊢ ( ( 𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐽 ↾t 𝐴 ) ∈ Conn → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ∀ 𝑟 ∈ 𝐵 ( ( 𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦 ) → 𝑟 ∈ 𝐴 ) ) ) |