Metamath Proof Explorer


Theorem ordtconnlem1

Description: Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn . See also reconnlem1 . (Contributed by Thierry Arnoux, 14-Sep-2018)

Ref Expression
Hypotheses ordtconn.x 𝐵 = ( Base ‘ 𝐾 )
ordtconn.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
ordtconn.j 𝐽 = ( ordTop ‘ )
Assertion ordtconnlem1 ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ( 𝐽t 𝐴 ) ∈ Conn → ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ordtconn.x 𝐵 = ( Base ‘ 𝐾 )
2 ordtconn.l = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) )
3 ordtconn.j 𝐽 = ( ordTop ‘ )
4 nfv 𝑟 ( 𝐾 ∈ Toset ∧ 𝐴𝐵 )
5 nfcv 𝑟 𝐴
6 nfra2w 𝑟𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 )
7 5 6 nfralw 𝑟𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 )
8 7 nfn 𝑟 ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 )
9 4 8 nfan 𝑟 ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
10 tospos ( 𝐾 ∈ Toset → 𝐾 ∈ Poset )
11 posprs ( 𝐾 ∈ Poset → 𝐾 ∈ Proset )
12 fvex ( le ‘ 𝐾 ) ∈ V
13 12 inex1 ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V
14 2 13 eqeltri ∈ V
15 eqid dom = dom
16 15 ordttopon ( ∈ V → ( ordTop ‘ ) ∈ ( TopOn ‘ dom ) )
17 14 16 ax-mp ( ordTop ‘ ) ∈ ( TopOn ‘ dom )
18 1 2 prsdm ( 𝐾 ∈ Proset → dom = 𝐵 )
19 18 fveq2d ( 𝐾 ∈ Proset → ( TopOn ‘ dom ) = ( TopOn ‘ 𝐵 ) )
20 17 19 eleqtrid ( 𝐾 ∈ Proset → ( ordTop ‘ ) ∈ ( TopOn ‘ 𝐵 ) )
21 3 20 eqeltrid ( 𝐾 ∈ Proset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
22 10 11 21 3syl ( 𝐾 ∈ Toset → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
23 22 ad3antrrr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
24 23 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) )
25 simpllr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐴𝐵 )
26 25 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → 𝐴𝐵 )
27 simpll ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → 𝐾 ∈ Toset )
28 snex { 𝐵 } ∈ V
29 1 fvexi 𝐵 ∈ V
30 29 mptex ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∈ V
31 30 rnex ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∈ V
32 29 mptex ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ∈ V
33 32 rnex ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ∈ V
34 31 33 unex ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ∈ V
35 28 34 unex ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ∈ V
36 ssfii ( ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ∈ V → ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
37 35 36 ax-mp ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) )
38 fvex ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ∈ V
39 bastg ( ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ∈ V → ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
40 38 39 ax-mp ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
41 37 40 sstri ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) )
42 eqid ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
43 eqid ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) = ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
44 1 2 42 43 ordtprsval ( 𝐾 ∈ Proset → ( ordTop ‘ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
45 3 44 eqtrid ( 𝐾 ∈ Proset → 𝐽 = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ) ) )
46 41 45 sseqtrrid ( 𝐾 ∈ Proset → ( { 𝐵 } ∪ ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ) ⊆ 𝐽 )
47 46 unssbd ( 𝐾 ∈ Proset → ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ⊆ 𝐽 )
48 27 10 11 47 4syl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ∪ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ) ⊆ 𝐽 )
49 48 unssbd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ⊆ 𝐽 )
50 breq2 ( 𝑧 = 𝑦 → ( 𝑟 𝑧𝑟 𝑦 ) )
51 50 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑟 𝑧 ↔ ¬ 𝑟 𝑦 ) )
52 51 cbvrabv { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑟 𝑦 }
53 breq1 ( 𝑥 = 𝑟 → ( 𝑥 𝑦𝑟 𝑦 ) )
54 53 notbid ( 𝑥 = 𝑟 → ( ¬ 𝑥 𝑦 ↔ ¬ 𝑟 𝑦 ) )
55 54 rabbidv ( 𝑥 = 𝑟 → { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } = { 𝑦𝐵 ∣ ¬ 𝑟 𝑦 } )
56 55 rspceeqv ( ( 𝑟𝐵 ∧ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑟 𝑦 } ) → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
57 52 56 mpan2 ( 𝑟𝐵 → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
58 29 rabex { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ V
59 eqid ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
60 59 elrnmpt ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ V → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
61 58 60 ax-mp ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } = { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } )
62 57 61 sylibr ( 𝑟𝐵 → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
63 62 adantl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑥 𝑦 } ) )
64 49 63 sseldd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ 𝐽 )
65 64 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∈ 𝐽 )
66 48 unssad ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ⊆ 𝐽 )
67 breq1 ( 𝑧 = 𝑦 → ( 𝑧 𝑟𝑦 𝑟 ) )
68 67 notbid ( 𝑧 = 𝑦 → ( ¬ 𝑧 𝑟 ↔ ¬ 𝑦 𝑟 ) )
69 68 cbvrabv { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑟 }
70 breq2 ( 𝑥 = 𝑟 → ( 𝑦 𝑥𝑦 𝑟 ) )
71 70 notbid ( 𝑥 = 𝑟 → ( ¬ 𝑦 𝑥 ↔ ¬ 𝑦 𝑟 ) )
72 71 rabbidv ( 𝑥 = 𝑟 → { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑟 } )
73 72 rspceeqv ( ( 𝑟𝐵 ∧ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑟 } ) → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
74 69 73 mpan2 ( 𝑟𝐵 → ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
75 29 rabex { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ V
76 eqid ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) = ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
77 76 elrnmpt ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ V → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
78 75 77 ax-mp ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) ↔ ∃ 𝑥𝐵 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } = { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } )
79 74 78 sylibr ( 𝑟𝐵 → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
80 79 adantl ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ ran ( 𝑥𝐵 ↦ { 𝑦𝐵 ∣ ¬ 𝑦 𝑥 } ) )
81 66 80 sseldd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ 𝐽 )
82 81 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∈ 𝐽 )
83 simpll ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) )
84 simpr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ¬ 𝑟𝐴 )
85 83 84 jca ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) )
86 simplrl ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ∃ 𝑥𝐴 ¬ 𝑟 𝑥 )
87 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
88 87 ancrd ( 𝐴𝐵 → ( 𝑥𝐴 → ( 𝑥𝐵𝑥𝐴 ) ) )
89 88 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴 ∧ ¬ 𝑟 𝑥 ) → ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) ) )
90 89 impl ( ( ( 𝐴𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) )
91 elin ( 𝑥 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ↔ ( 𝑥 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑥𝐴 ) )
92 breq2 ( 𝑧 = 𝑥 → ( 𝑟 𝑧𝑟 𝑥 ) )
93 92 notbid ( 𝑧 = 𝑥 → ( ¬ 𝑟 𝑧 ↔ ¬ 𝑟 𝑥 ) )
94 93 elrab ( 𝑥 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ↔ ( 𝑥𝐵 ∧ ¬ 𝑟 𝑥 ) )
95 94 anbi1i ( ( 𝑥 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑥𝐴 ) ↔ ( ( 𝑥𝐵 ∧ ¬ 𝑟 𝑥 ) ∧ 𝑥𝐴 ) )
96 an32 ( ( ( 𝑥𝐵 ∧ ¬ 𝑟 𝑥 ) ∧ 𝑥𝐴 ) ↔ ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) )
97 91 95 96 3bitri ( 𝑥 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ↔ ( ( 𝑥𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) )
98 90 97 sylibr ( ( ( 𝐴𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → 𝑥 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) )
99 98 ne0d ( ( ( 𝐴𝐵𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
100 25 99 sylanl1 ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) ∧ ¬ 𝑟 𝑥 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
101 100 r19.29an ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
102 85 86 101 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ 𝐴 ) ≠ ∅ )
103 simplrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ∃ 𝑦𝐴 ¬ 𝑦 𝑟 )
104 ssel ( 𝐴𝐵 → ( 𝑦𝐴𝑦𝐵 ) )
105 104 ancrd ( 𝐴𝐵 → ( 𝑦𝐴 → ( 𝑦𝐵𝑦𝐴 ) ) )
106 105 anim1d ( 𝐴𝐵 → ( ( 𝑦𝐴 ∧ ¬ 𝑦 𝑟 ) → ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) ) )
107 106 impl ( ( ( 𝐴𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) )
108 elin ( 𝑦 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ↔ ( 𝑦 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∧ 𝑦𝐴 ) )
109 68 elrab ( 𝑦 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑟 ) )
110 109 anbi1i ( ( 𝑦 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∧ 𝑦𝐴 ) ↔ ( ( 𝑦𝐵 ∧ ¬ 𝑦 𝑟 ) ∧ 𝑦𝐴 ) )
111 an32 ( ( ( 𝑦𝐵 ∧ ¬ 𝑦 𝑟 ) ∧ 𝑦𝐴 ) ↔ ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) )
112 108 110 111 3bitri ( 𝑦 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ↔ ( ( 𝑦𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) )
113 107 112 sylibr ( ( ( 𝐴𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → 𝑦 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) )
114 113 ne0d ( ( ( 𝐴𝐵𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
115 25 114 sylanl1 ( ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) ∧ ¬ 𝑦 𝑟 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
116 115 r19.29an ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
117 85 103 116 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ∩ 𝐴 ) ≠ ∅ )
118 1 2 trleile ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵𝑧𝐵 ) → ( 𝑟 𝑧𝑧 𝑟 ) )
119 oran ( ( 𝑟 𝑧𝑧 𝑟 ) ↔ ¬ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
120 118 119 sylib ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵𝑧𝐵 ) → ¬ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
121 120 3expa ( ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵 ) ∧ 𝑧𝐵 ) → ¬ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
122 121 nrexdv ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵 ) → ¬ ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
123 rabid ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ↔ ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) )
124 rabid ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ↔ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) )
125 123 124 anbi12i ( ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∧ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
126 elin ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∧ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
127 anandi ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∧ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
128 125 126 127 3bitr4i ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) )
129 128 exbii ( ∃ 𝑧 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) )
130 nfrab1 𝑧 { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 }
131 nfrab1 𝑧 { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 }
132 130 131 nfin 𝑧 ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } )
133 132 n0f ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
134 df-rex ( ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ↔ ∃ 𝑧 ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ) )
135 129 133 134 3bitr4i ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ≠ ∅ ↔ ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) )
136 135 necon1bbii ( ¬ ∃ 𝑧𝐵 ( ¬ 𝑟 𝑧 ∧ ¬ 𝑧 𝑟 ) ↔ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
137 122 136 sylib ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
138 137 adantlr ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
139 138 adantr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ∅ )
140 139 ineq1d ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) )
141 0in ( ∅ ∩ 𝐴 ) = ∅
142 140 141 eqtrdi ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ∩ 𝐴 ) = ∅ )
143 142 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ( ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∩ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ∩ 𝐴 ) = ∅ )
144 simplr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝑟𝐵 )
145 simpr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ¬ 𝑟𝐴 )
146 vex 𝑟 ∈ V
147 146 snss ( 𝑟𝐵 ↔ { 𝑟 } ⊆ 𝐵 )
148 eldif ( 𝑟 ∈ ( 𝐵𝐴 ) ↔ ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) )
149 146 snss ( 𝑟 ∈ ( 𝐵𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵𝐴 ) )
150 148 149 bitr3i ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ { 𝑟 } ⊆ ( 𝐵𝐴 ) )
151 ssconb ( ( { 𝑟 } ⊆ 𝐵𝐴𝐵 ) → ( { 𝑟 } ⊆ ( 𝐵𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
152 150 151 bitrid ( ( { 𝑟 } ⊆ 𝐵𝐴𝐵 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
153 147 152 sylanb ( ( 𝑟𝐵𝐴𝐵 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
154 153 adantl ( ( 𝐾 ∈ Toset ∧ ( 𝑟𝐵𝐴𝐵 ) ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
155 154 anass1rs ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
156 155 adantr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( 𝑟𝐵 ∧ ¬ 𝑟𝐴 ) ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) ) )
157 144 145 156 mpbi2and ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐴 ⊆ ( 𝐵 ∖ { 𝑟 } ) )
158 10 ad3antrrr ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐾 ∈ Poset )
159 nfv 𝑧 ( 𝐾 ∈ Poset ∧ 𝑟𝐵 )
160 130 131 nfun 𝑧 ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } )
161 nfcv 𝑧 ( 𝐵 ∖ { 𝑟 } )
162 ianor ( ¬ ( 𝑟 𝑧𝑧 𝑟 ) ↔ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) )
163 1 2 posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ( 𝑟 𝑧𝑧 𝑟 ) ↔ 𝑟 = 𝑧 ) )
164 equcom ( 𝑟 = 𝑧𝑧 = 𝑟 )
165 163 164 bitrdi ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ( 𝑟 𝑧𝑧 𝑟 ) ↔ 𝑧 = 𝑟 ) )
166 165 necon3bbid ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ¬ ( 𝑟 𝑧𝑧 𝑟 ) ↔ 𝑧𝑟 ) )
167 162 166 bitr3id ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑧𝐵 ) → ( ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ↔ 𝑧𝑟 ) )
168 167 3expia ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( 𝑧𝐵 → ( ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ↔ 𝑧𝑟 ) ) )
169 168 pm5.32d ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ) ↔ ( 𝑧𝐵𝑧𝑟 ) ) )
170 123 124 orbi12i ( ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∨ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∨ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
171 elun ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ ( 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∨ 𝑧 ∈ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
172 andi ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ) ↔ ( ( 𝑧𝐵 ∧ ¬ 𝑟 𝑧 ) ∨ ( 𝑧𝐵 ∧ ¬ 𝑧 𝑟 ) ) )
173 170 171 172 3bitr4ri ( ( 𝑧𝐵 ∧ ( ¬ 𝑟 𝑧 ∨ ¬ 𝑧 𝑟 ) ) ↔ 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
174 eldifsn ( 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ↔ ( 𝑧𝐵𝑧𝑟 ) )
175 174 bicomi ( ( 𝑧𝐵𝑧𝑟 ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) )
176 169 173 175 3bitr3g ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( 𝑧 ∈ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) ↔ 𝑧 ∈ ( 𝐵 ∖ { 𝑟 } ) ) )
177 159 160 161 176 eqrd ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) )
178 158 144 177 syl2anc ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) = ( 𝐵 ∖ { 𝑟 } ) )
179 157 178 sseqtrrd ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → 𝐴 ⊆ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
180 179 adantlr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → 𝐴 ⊆ ( { 𝑧𝐵 ∣ ¬ 𝑟 𝑧 } ∪ { 𝑧𝐵 ∣ ¬ 𝑧 𝑟 } ) )
181 24 26 65 82 102 117 143 180 nconnsubb ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ∧ ¬ 𝑟𝐴 ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
182 181 anasss ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
183 182 adantllr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) ∧ 𝑟𝐵 ) ∧ ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
184 rexanali ( ∃ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ¬ ∀ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
185 184 rexbii ( ∃ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑦𝐴 ¬ ∀ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
186 rexcom ( ∃ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
187 rexnal ( ∃ 𝑦𝐴 ¬ ∀ 𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
188 185 186 187 3bitr3i ( ∃ 𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
189 188 rexbii ( ∃ 𝑥𝐴𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
190 rexcom ( ∃ 𝑥𝐴𝑟𝐵𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
191 rexnal ( ∃ 𝑥𝐴 ¬ ∀ 𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
192 189 190 191 3bitr3i ( ∃ 𝑟𝐵𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) )
193 r19.41v ( ∃ 𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ∃ 𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
194 193 rexbii ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
195 r19.41v ( ∃ 𝑥𝐴 ( ∃ 𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
196 reeanv ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ↔ ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) )
197 196 anbi1i ( ( ∃ 𝑥𝐴𝑦𝐴 ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
198 194 195 197 3bitri ( ∃ 𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
199 198 rexbii ( ∃ 𝑟𝐵𝑥𝐴𝑦𝐴 ( ( 𝑥 𝑟𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
200 192 199 bitr3i ( ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) )
201 27 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝐾 ∈ Toset )
202 25 sselda ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑥𝐵 )
203 simpllr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑟𝐵 )
204 1 2 trleile ( ( 𝐾 ∈ Toset ∧ 𝑥𝐵𝑟𝐵 ) → ( 𝑥 𝑟𝑟 𝑥 ) )
205 201 202 203 204 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥 𝑟𝑟 𝑥 ) )
206 simpr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑥𝐴 )
207 simplr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ¬ 𝑟𝐴 )
208 nelne2 ( ( 𝑥𝐴 ∧ ¬ 𝑟𝐴 ) → 𝑥𝑟 )
209 206 207 208 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝑥𝑟 )
210 158 adantr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → 𝐾 ∈ Poset )
211 1 2 posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑥𝐵𝑟𝐵 ) → ( ( 𝑥 𝑟𝑟 𝑥 ) ↔ 𝑥 = 𝑟 ) )
212 211 necon3bbid ( ( 𝐾 ∈ Poset ∧ 𝑥𝐵𝑟𝐵 ) → ( ¬ ( 𝑥 𝑟𝑟 𝑥 ) ↔ 𝑥𝑟 ) )
213 210 202 203 212 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( ¬ ( 𝑥 𝑟𝑟 𝑥 ) ↔ 𝑥𝑟 ) )
214 209 213 mpbird ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ¬ ( 𝑥 𝑟𝑟 𝑥 ) )
215 205 214 jca ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( ( 𝑥 𝑟𝑟 𝑥 ) ∧ ¬ ( 𝑥 𝑟𝑟 𝑥 ) ) )
216 pm5.17 ( ( ( 𝑥 𝑟𝑟 𝑥 ) ∧ ¬ ( 𝑥 𝑟𝑟 𝑥 ) ) ↔ ( 𝑥 𝑟 ↔ ¬ 𝑟 𝑥 ) )
217 215 216 sylib ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥 𝑟 ↔ ¬ 𝑟 𝑥 ) )
218 217 rexbidva ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ∃ 𝑥𝐴 𝑥 𝑟 ↔ ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ) )
219 27 ad2antrr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝐾 ∈ Toset )
220 simpllr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑟𝐵 )
221 25 sselda ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑦𝐵 )
222 1 2 trleile ( ( 𝐾 ∈ Toset ∧ 𝑟𝐵𝑦𝐵 ) → ( 𝑟 𝑦𝑦 𝑟 ) )
223 219 220 221 222 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑟 𝑦𝑦 𝑟 ) )
224 simpr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑦𝐴 )
225 simplr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ¬ 𝑟𝐴 )
226 nelne2 ( ( 𝑦𝐴 ∧ ¬ 𝑟𝐴 ) → 𝑦𝑟 )
227 224 225 226 syl2anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑦𝑟 )
228 227 necomd ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝑟𝑦 )
229 158 adantr ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → 𝐾 ∈ Poset )
230 1 2 posrasymb ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑦𝐵 ) → ( ( 𝑟 𝑦𝑦 𝑟 ) ↔ 𝑟 = 𝑦 ) )
231 230 necon3bbid ( ( 𝐾 ∈ Poset ∧ 𝑟𝐵𝑦𝐵 ) → ( ¬ ( 𝑟 𝑦𝑦 𝑟 ) ↔ 𝑟𝑦 ) )
232 229 220 221 231 syl3anc ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( ¬ ( 𝑟 𝑦𝑦 𝑟 ) ↔ 𝑟𝑦 ) )
233 228 232 mpbird ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ¬ ( 𝑟 𝑦𝑦 𝑟 ) )
234 223 233 jca ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( ( 𝑟 𝑦𝑦 𝑟 ) ∧ ¬ ( 𝑟 𝑦𝑦 𝑟 ) ) )
235 pm5.17 ( ( ( 𝑟 𝑦𝑦 𝑟 ) ∧ ¬ ( 𝑟 𝑦𝑦 𝑟 ) ) ↔ ( 𝑟 𝑦 ↔ ¬ 𝑦 𝑟 ) )
236 234 235 sylib ( ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) ∧ 𝑦𝐴 ) → ( 𝑟 𝑦 ↔ ¬ 𝑦 𝑟 ) )
237 236 rexbidva ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ∃ 𝑦𝐴 𝑟 𝑦 ↔ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) )
238 218 237 anbi12d ( ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) ∧ ¬ 𝑟𝐴 ) → ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ↔ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) )
239 238 ex ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ¬ 𝑟𝐴 → ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ↔ ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ) ) )
240 239 pm5.32rd ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ 𝑟𝐵 ) → ( ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) )
241 240 rexbidva ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 𝑥 𝑟 ∧ ∃ 𝑦𝐴 𝑟 𝑦 ) ∧ ¬ 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) )
242 200 241 bitrid ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ↔ ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) ) )
243 242 biimpa ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) → ∃ 𝑟𝐵 ( ( ∃ 𝑥𝐴 ¬ 𝑟 𝑥 ∧ ∃ 𝑦𝐴 ¬ 𝑦 𝑟 ) ∧ ¬ 𝑟𝐴 ) )
244 9 183 243 r19.29af ( ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) ∧ ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn )
245 244 ex ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ¬ ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) → ¬ ( 𝐽t 𝐴 ) ∈ Conn ) )
246 245 con4d ( ( 𝐾 ∈ Toset ∧ 𝐴𝐵 ) → ( ( 𝐽t 𝐴 ) ∈ Conn → ∀ 𝑥𝐴𝑦𝐴𝑟𝐵 ( ( 𝑥 𝑟𝑟 𝑦 ) → 𝑟𝐴 ) ) )