| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 3 |
|
ordtposval.e |
⊢ 𝐸 = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 4 |
|
ordtposval.f |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 5 |
|
fvex |
⊢ ( le ‘ 𝐾 ) ∈ V |
| 6 |
5
|
inex1 |
⊢ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ∈ V |
| 7 |
2 6
|
eqeltri |
⊢ ≤ ∈ V |
| 8 |
|
eqid |
⊢ dom ≤ = dom ≤ |
| 9 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 10 |
|
eqid |
⊢ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 11 |
8 9 10
|
ordtval |
⊢ ( ≤ ∈ V → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) ) |
| 12 |
7 11
|
ax-mp |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) |
| 13 |
1 2
|
prsdm |
⊢ ( 𝐾 ∈ Proset → dom ≤ = 𝐵 ) |
| 14 |
13
|
sneqd |
⊢ ( 𝐾 ∈ Proset → { dom ≤ } = { 𝐵 } ) |
| 15 |
13
|
rabeqdv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 16 |
13 15
|
mpteq12dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
| 17 |
16
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥 } ) ) |
| 18 |
17 3
|
eqtr4di |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) = 𝐸 ) |
| 19 |
13
|
rabeqdv |
⊢ ( 𝐾 ∈ Proset → { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } = { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 20 |
13 19
|
mpteq12dv |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
| 21 |
20
|
rneqd |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = ran ( 𝑥 ∈ 𝐵 ↦ { 𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦 } ) ) |
| 22 |
21 4
|
eqtr4di |
⊢ ( 𝐾 ∈ Proset → ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) = 𝐹 ) |
| 23 |
18 22
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) = ( 𝐸 ∪ 𝐹 ) ) |
| 24 |
14 23
|
uneq12d |
⊢ ( 𝐾 ∈ Proset → ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) = ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) |
| 25 |
24
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) = ( fi ‘ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) ) |
| 26 |
25
|
fveq2d |
⊢ ( 𝐾 ∈ Proset → ( topGen ‘ ( fi ‘ ( { dom ≤ } ∪ ( ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑦 ≤ 𝑥 } ) ∪ ran ( 𝑥 ∈ dom ≤ ↦ { 𝑦 ∈ dom ≤ ∣ ¬ 𝑥 ≤ 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) ) ) |
| 27 |
12 26
|
eqtrid |
⊢ ( 𝐾 ∈ Proset → ( ordTop ‘ ≤ ) = ( topGen ‘ ( fi ‘ ( { 𝐵 } ∪ ( 𝐸 ∪ 𝐹 ) ) ) ) ) |