Metamath Proof Explorer


Theorem ordtr

Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordtr ( Ord 𝐴 → Tr 𝐴 )

Proof

Step Hyp Ref Expression
1 df-ord ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) )
2 1 simplbi ( Ord 𝐴 → Tr 𝐴 )