Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
ordtr
Next ⟩
ordfr
Metamath Proof Explorer
Ascii
Structured
Theorem
ordtr
Description:
An ordinal class is transitive.
(Contributed by
NM
, 3-Apr-1994)
Ref
Expression
Assertion
ordtr
⊢
( Ord
𝐴
→ Tr
𝐴
)
Proof
Step
Hyp
Ref
Expression
1
df-ord
⊢
( Ord
𝐴
↔ ( Tr
𝐴
∧ E We
𝐴
) )
2
1
simplbi
⊢
( Ord
𝐴
→ Tr
𝐴
)