Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtr1 | ⊢ ( Ord 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr | ⊢ ( Ord 𝐶 → Tr 𝐶 ) | |
2 | trel | ⊢ ( Tr 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) | |
3 | 1 2 | syl | ⊢ ( Ord 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |