Metamath Proof Explorer


Theorem ordtr1

Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004)

Ref Expression
Assertion ordtr1 ( Ord 𝐶 → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝐶 → Tr 𝐶 )
2 trel ( Tr 𝐶 → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )
3 1 2 syl ( Ord 𝐶 → ( ( 𝐴𝐵𝐵𝐶 ) → 𝐴𝐶 ) )