Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordtr1 | ⊢ ( Ord 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr | ⊢ ( Ord 𝐶 → Tr 𝐶 ) | |
| 2 | trel | ⊢ ( Tr 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) | |
| 3 | 1 2 | syl | ⊢ ( Ord 𝐶 → ( ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |