Step |
Hyp |
Ref |
Expression |
1 |
|
ordelord |
⊢ ( ( Ord 𝐶 ∧ 𝐵 ∈ 𝐶 ) → Ord 𝐵 ) |
2 |
1
|
ex |
⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → Ord 𝐵 ) ) |
3 |
2
|
ancld |
⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) ) |
4 |
3
|
anc2li |
⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → ( Ord 𝐶 ∧ ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) ) ) |
5 |
|
ordelpss |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 ↔ 𝐵 ⊊ 𝐶 ) ) |
6 |
|
sspsstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶 ) → 𝐴 ⊊ 𝐶 ) |
7 |
6
|
expcom |
⊢ ( 𝐵 ⊊ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) |
8 |
5 7
|
syl6bi |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) ) |
9 |
8
|
expcom |
⊢ ( Ord 𝐶 → ( Ord 𝐵 → ( 𝐵 ∈ 𝐶 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) ) ) |
10 |
9
|
com23 |
⊢ ( Ord 𝐶 → ( 𝐵 ∈ 𝐶 → ( Ord 𝐵 → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) ) ) |
11 |
10
|
imp32 |
⊢ ( ( Ord 𝐶 ∧ ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 → 𝐴 ⊊ 𝐶 ) ) |
12 |
11
|
com12 |
⊢ ( 𝐴 ⊆ 𝐵 → ( ( Ord 𝐶 ∧ ( 𝐵 ∈ 𝐶 ∧ Ord 𝐵 ) ) → 𝐴 ⊊ 𝐶 ) ) |
13 |
4 12
|
syl9 |
⊢ ( Ord 𝐶 → ( 𝐴 ⊆ 𝐵 → ( 𝐵 ∈ 𝐶 → 𝐴 ⊊ 𝐶 ) ) ) |
14 |
13
|
impd |
⊢ ( Ord 𝐶 → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ⊊ 𝐶 ) ) |
15 |
14
|
adantl |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ⊊ 𝐶 ) ) |
16 |
|
ordelpss |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ⊊ 𝐶 ) ) |
17 |
15 16
|
sylibrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐶 ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶 ) → 𝐴 ∈ 𝐶 ) ) |