Metamath Proof Explorer


Theorem ordtr3

Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014) (Proof shortened by JJ, 24-Sep-2021)

Ref Expression
Assertion ordtr3 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴𝐵 → ( 𝐴𝐶𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 nelss ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) → ¬ 𝐵𝐶 )
2 1 adantl ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ) → ¬ 𝐵𝐶 )
3 ordtri1 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵𝐶 ↔ ¬ 𝐶𝐵 ) )
4 3 con2bid ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐶𝐵 ↔ ¬ 𝐵𝐶 ) )
5 4 adantr ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ) → ( 𝐶𝐵 ↔ ¬ 𝐵𝐶 ) )
6 2 5 mpbird ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴𝐵 ∧ ¬ 𝐴𝐶 ) ) → 𝐶𝐵 )
7 6 expr ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ 𝐴𝐵 ) → ( ¬ 𝐴𝐶𝐶𝐵 ) )
8 7 orrd ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ 𝐴𝐵 ) → ( 𝐴𝐶𝐶𝐵 ) )
9 8 ex ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴𝐵 → ( 𝐴𝐶𝐶𝐵 ) ) )