Step |
Hyp |
Ref |
Expression |
1 |
|
nelss |
⊢ ( ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) → ¬ 𝐵 ⊆ 𝐶 ) |
2 |
1
|
adantl |
⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ¬ 𝐵 ⊆ 𝐶 ) |
3 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵 ) ) |
4 |
3
|
con2bid |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → ( 𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶 ) ) |
6 |
2 5
|
mpbird |
⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ ( 𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶 ) ) → 𝐶 ∈ 𝐵 ) |
7 |
6
|
expr |
⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ 𝐴 ∈ 𝐵 ) → ( ¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵 ) ) |
8 |
7
|
orrd |
⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐶 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) |
9 |
8
|
ex |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵 ) ) ) |