| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtrest2.1 |
⊢ 𝑋 = dom 𝑅 |
| 2 |
|
ordtrest2.2 |
⊢ ( 𝜑 → 𝑅 ∈ TosetRel ) |
| 3 |
|
ordtrest2.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
| 4 |
|
ordtrest2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ⊆ 𝐴 ) |
| 5 |
|
tsrps |
⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) |
| 6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ PosetRel ) |
| 7 |
2
|
dmexd |
⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
| 8 |
1 7
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 9 |
8 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 10 |
|
ordtrest |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ∈ V ) → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |
| 11 |
6 9 10
|
syl2anc |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |
| 12 |
|
eqid |
⊢ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) = ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) |
| 13 |
|
eqid |
⊢ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) |
| 14 |
1 12 13
|
ordtval |
⊢ ( 𝑅 ∈ TosetRel → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ) |
| 16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
| 17 |
|
fibas |
⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ∈ TopBases |
| 18 |
|
tgrest |
⊢ ( ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ∈ TopBases ∧ 𝐴 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
| 19 |
17 9 18
|
sylancr |
⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
| 20 |
16 19
|
eqtr4d |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) ) |
| 21 |
|
firest |
⊢ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) = ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) |
| 22 |
21
|
fveq2i |
⊢ ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) = ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) |
| 23 |
20 22
|
eqtr4di |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ) |
| 24 |
|
inex1g |
⊢ ( 𝑅 ∈ TosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
| 26 |
|
ordttop |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
| 28 |
1 12 13
|
ordtuni |
⊢ ( 𝑅 ∈ TosetRel → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) |
| 29 |
2 28
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) |
| 30 |
29 8
|
eqeltrrd |
⊢ ( 𝜑 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
| 31 |
|
uniexb |
⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
| 32 |
30 31
|
sylibr |
⊢ ( 𝜑 → ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
| 33 |
|
restval |
⊢ ( ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ∧ 𝐴 ∈ V ) → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ) |
| 34 |
32 9 33
|
syl2anc |
⊢ ( 𝜑 → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ) |
| 35 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∩ 𝐴 ) = 𝐴 ) |
| 36 |
3 35
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝐴 ) = 𝐴 ) |
| 37 |
|
eqid |
⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
| 38 |
37
|
ordttopon |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 39 |
25 38
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 40 |
1
|
psssdm |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋 ) → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
| 41 |
6 3 40
|
syl2anc |
⊢ ( 𝜑 → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
| 42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( TopOn ‘ 𝐴 ) ) |
| 43 |
39 42
|
eleqtrd |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) ) |
| 44 |
|
toponmax |
⊢ ( ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 46 |
36 45
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 47 |
|
elsni |
⊢ ( 𝑣 ∈ { 𝑋 } → 𝑣 = 𝑋 ) |
| 48 |
47
|
ineq1d |
⊢ ( 𝑣 ∈ { 𝑋 } → ( 𝑣 ∩ 𝐴 ) = ( 𝑋 ∩ 𝐴 ) ) |
| 49 |
48
|
eleq1d |
⊢ ( 𝑣 ∈ { 𝑋 } → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑋 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 50 |
46 49
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑋 } → ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 51 |
50
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑣 ∈ { 𝑋 } ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 52 |
1 2 3 4
|
ordtrest2lem |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 53 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
| 54 |
|
cnvtsr |
⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) |
| 55 |
2 54
|
syl |
⊢ ( 𝜑 → ◡ 𝑅 ∈ TosetRel ) |
| 56 |
1
|
psrn |
⊢ ( 𝑅 ∈ PosetRel → 𝑋 = ran 𝑅 ) |
| 57 |
6 56
|
syl |
⊢ ( 𝜑 → 𝑋 = ran 𝑅 ) |
| 58 |
3 57
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ran 𝑅 ) |
| 59 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑋 = ran 𝑅 ) |
| 60 |
59
|
rabeqdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ) |
| 61 |
|
vex |
⊢ 𝑦 ∈ V |
| 62 |
|
vex |
⊢ 𝑧 ∈ V |
| 63 |
61 62
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 64 |
|
vex |
⊢ 𝑥 ∈ V |
| 65 |
62 64
|
brcnv |
⊢ ( 𝑧 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑧 ) |
| 66 |
63 65
|
anbi12ci |
⊢ ( ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) ) |
| 67 |
66
|
rabbii |
⊢ { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } |
| 68 |
60 67
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ) |
| 69 |
68 4
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ⊆ 𝐴 ) |
| 70 |
69
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ⊆ 𝐴 ) |
| 71 |
53 55 58 70
|
ordtrest2lem |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 72 |
|
vex |
⊢ 𝑤 ∈ V |
| 73 |
72 62
|
brcnv |
⊢ ( 𝑤 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑤 ) |
| 74 |
73
|
bicomi |
⊢ ( 𝑧 𝑅 𝑤 ↔ 𝑤 ◡ 𝑅 𝑧 ) |
| 75 |
74
|
a1i |
⊢ ( 𝜑 → ( 𝑧 𝑅 𝑤 ↔ 𝑤 ◡ 𝑅 𝑧 ) ) |
| 76 |
75
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑧 𝑅 𝑤 ↔ ¬ 𝑤 ◡ 𝑅 𝑧 ) ) |
| 77 |
57 76
|
rabeqbidv |
⊢ ( 𝜑 → { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } = { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) |
| 78 |
57 77
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ) |
| 79 |
78
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ) |
| 80 |
|
psss |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |
| 81 |
6 80
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |
| 82 |
|
ordtcnv |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel → ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 83 |
81 82
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 84 |
|
cnvin |
⊢ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ◡ ( 𝐴 × 𝐴 ) ) |
| 85 |
|
cnvxp |
⊢ ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) |
| 86 |
85
|
ineq2i |
⊢ ( ◡ 𝑅 ∩ ◡ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
| 87 |
84 86
|
eqtri |
⊢ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
| 88 |
87
|
fveq2i |
⊢ ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 89 |
83 88
|
eqtr3di |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 90 |
89
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 91 |
79 90
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∀ 𝑣 ∈ ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 92 |
71 91
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 93 |
|
ralunb |
⊢ ( ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 94 |
52 92 93
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 95 |
|
ralunb |
⊢ ( ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ { 𝑋 } ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
| 96 |
51 94 95
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 97 |
|
eqid |
⊢ ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) = ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) |
| 98 |
97
|
fmpt |
⊢ ( ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) : ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 99 |
96 98
|
sylib |
⊢ ( 𝜑 → ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) : ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 100 |
99
|
frnd |
⊢ ( 𝜑 → ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 101 |
34 100
|
eqsstrd |
⊢ ( 𝜑 → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 102 |
|
tgfiss |
⊢ ( ( ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ∧ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) → ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 103 |
27 101 102
|
syl2anc |
⊢ ( 𝜑 → ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 104 |
23 103
|
eqsstrd |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 105 |
11 104
|
eqssd |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |