Step |
Hyp |
Ref |
Expression |
1 |
|
ordtrest2.1 |
⊢ 𝑋 = dom 𝑅 |
2 |
|
ordtrest2.2 |
⊢ ( 𝜑 → 𝑅 ∈ TosetRel ) |
3 |
|
ordtrest2.3 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
4 |
|
ordtrest2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ⊆ 𝐴 ) |
5 |
|
tsrps |
⊢ ( 𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel ) |
6 |
2 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ PosetRel ) |
7 |
2
|
dmexd |
⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
8 |
1 7
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
9 |
8 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
10 |
|
ordtrest |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ∈ V ) → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |
11 |
6 9 10
|
syl2anc |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ⊆ ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |
12 |
|
eqid |
⊢ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) = ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) |
13 |
|
eqid |
⊢ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) |
14 |
1 12 13
|
ordtval |
⊢ ( 𝑅 ∈ TosetRel → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
17 |
|
fibas |
⊢ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ∈ TopBases |
18 |
|
tgrest |
⊢ ( ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ∈ TopBases ∧ 𝐴 ∈ V ) → ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
19 |
17 9 18
|
sylancr |
⊢ ( 𝜑 → ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) = ( ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ) ↾t 𝐴 ) ) |
20 |
16 19
|
eqtr4d |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) ) |
21 |
|
firest |
⊢ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) = ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) |
22 |
21
|
fveq2i |
⊢ ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) = ( topGen ‘ ( ( fi ‘ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) ↾t 𝐴 ) ) |
23 |
20 22
|
eqtr4di |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) = ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ) |
24 |
|
inex1g |
⊢ ( 𝑅 ∈ TosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
25 |
2 24
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V ) |
26 |
|
ordttop |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ) |
28 |
1 12 13
|
ordtuni |
⊢ ( 𝑅 ∈ TosetRel → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) |
29 |
2 28
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ) |
30 |
29 8
|
eqeltrrd |
⊢ ( 𝜑 → ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
31 |
|
uniexb |
⊢ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ↔ ∪ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
32 |
30 31
|
sylibr |
⊢ ( 𝜑 → ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ) |
33 |
|
restval |
⊢ ( ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ∈ V ∧ 𝐴 ∈ V ) → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ) |
34 |
32 9 33
|
syl2anc |
⊢ ( 𝜑 → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) = ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ) |
35 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ 𝑋 ↔ ( 𝑋 ∩ 𝐴 ) = 𝐴 ) |
36 |
3 35
|
sylib |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝐴 ) = 𝐴 ) |
37 |
|
eqid |
⊢ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
38 |
37
|
ordttopon |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ V → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
39 |
25 38
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
40 |
1
|
psssdm |
⊢ ( ( 𝑅 ∈ PosetRel ∧ 𝐴 ⊆ 𝑋 ) → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
41 |
6 3 40
|
syl2anc |
⊢ ( 𝜑 → dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = 𝐴 ) |
42 |
41
|
fveq2d |
⊢ ( 𝜑 → ( TopOn ‘ dom ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( TopOn ‘ 𝐴 ) ) |
43 |
39 42
|
eleqtrd |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) ) |
44 |
|
toponmax |
⊢ ( ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ ( TopOn ‘ 𝐴 ) → 𝐴 ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
46 |
36 45
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
47 |
|
elsni |
⊢ ( 𝑣 ∈ { 𝑋 } → 𝑣 = 𝑋 ) |
48 |
47
|
ineq1d |
⊢ ( 𝑣 ∈ { 𝑋 } → ( 𝑣 ∩ 𝐴 ) = ( 𝑋 ∩ 𝐴 ) ) |
49 |
48
|
eleq1d |
⊢ ( 𝑣 ∈ { 𝑋 } → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑋 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
50 |
46 49
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑣 ∈ { 𝑋 } → ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
51 |
50
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑣 ∈ { 𝑋 } ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
52 |
1 2 3 4
|
ordtrest2lem |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
53 |
|
df-rn |
⊢ ran 𝑅 = dom ◡ 𝑅 |
54 |
|
cnvtsr |
⊢ ( 𝑅 ∈ TosetRel → ◡ 𝑅 ∈ TosetRel ) |
55 |
2 54
|
syl |
⊢ ( 𝜑 → ◡ 𝑅 ∈ TosetRel ) |
56 |
1
|
psrn |
⊢ ( 𝑅 ∈ PosetRel → 𝑋 = ran 𝑅 ) |
57 |
6 56
|
syl |
⊢ ( 𝜑 → 𝑋 = ran 𝑅 ) |
58 |
3 57
|
sseqtrd |
⊢ ( 𝜑 → 𝐴 ⊆ ran 𝑅 ) |
59 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → 𝑋 = ran 𝑅 ) |
60 |
59
|
rabeqdv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } ) |
61 |
|
vex |
⊢ 𝑦 ∈ V |
62 |
|
vex |
⊢ 𝑧 ∈ V |
63 |
61 62
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
64 |
|
vex |
⊢ 𝑥 ∈ V |
65 |
62 64
|
brcnv |
⊢ ( 𝑧 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑧 ) |
66 |
63 65
|
anbi12ci |
⊢ ( ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) ) |
67 |
66
|
rabbii |
⊢ { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } |
68 |
60 67
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ 𝑋 ∣ ( 𝑥 𝑅 𝑧 ∧ 𝑧 𝑅 𝑦 ) } = { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ) |
69 |
68 4
|
eqsstrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ⊆ 𝐴 ) |
70 |
69
|
ancom2s |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → { 𝑧 ∈ ran 𝑅 ∣ ( 𝑦 ◡ 𝑅 𝑧 ∧ 𝑧 ◡ 𝑅 𝑥 ) } ⊆ 𝐴 ) |
71 |
53 55 58 70
|
ordtrest2lem |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
72 |
|
vex |
⊢ 𝑤 ∈ V |
73 |
72 62
|
brcnv |
⊢ ( 𝑤 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑤 ) |
74 |
73
|
bicomi |
⊢ ( 𝑧 𝑅 𝑤 ↔ 𝑤 ◡ 𝑅 𝑧 ) |
75 |
74
|
a1i |
⊢ ( 𝜑 → ( 𝑧 𝑅 𝑤 ↔ 𝑤 ◡ 𝑅 𝑧 ) ) |
76 |
75
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝑧 𝑅 𝑤 ↔ ¬ 𝑤 ◡ 𝑅 𝑧 ) ) |
77 |
57 76
|
rabeqbidv |
⊢ ( 𝜑 → { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } = { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) |
78 |
57 77
|
mpteq12dv |
⊢ ( 𝜑 → ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ) |
79 |
78
|
rneqd |
⊢ ( 𝜑 → ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) = ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ) |
80 |
|
psss |
⊢ ( 𝑅 ∈ PosetRel → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |
81 |
6 80
|
syl |
⊢ ( 𝜑 → ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel ) |
82 |
|
ordtcnv |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ∈ PosetRel → ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
83 |
81 82
|
syl |
⊢ ( 𝜑 → ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
84 |
|
cnvin |
⊢ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ◡ ( 𝐴 × 𝐴 ) ) |
85 |
|
cnvxp |
⊢ ◡ ( 𝐴 × 𝐴 ) = ( 𝐴 × 𝐴 ) |
86 |
85
|
ineq2i |
⊢ ( ◡ 𝑅 ∩ ◡ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
87 |
84 86
|
eqtri |
⊢ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) = ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) |
88 |
87
|
fveq2i |
⊢ ( ordTop ‘ ◡ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) |
89 |
83 88
|
eqtr3di |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
90 |
89
|
eleq2d |
⊢ ( 𝜑 → ( ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
91 |
79 90
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ∀ 𝑣 ∈ ran ( 𝑧 ∈ ran 𝑅 ↦ { 𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤 ◡ 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( ◡ 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
92 |
71 91
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
93 |
|
ralunb |
⊢ ( ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
94 |
52 92 93
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
95 |
|
ralunb |
⊢ ( ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( ∀ 𝑣 ∈ { 𝑋 } ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∧ ∀ 𝑣 ∈ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) ) |
96 |
51 94 95
|
sylanbrc |
⊢ ( 𝜑 → ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
97 |
|
eqid |
⊢ ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) = ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) |
98 |
97
|
fmpt |
⊢ ( ∀ 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ( 𝑣 ∩ 𝐴 ) ∈ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) : ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
99 |
96 98
|
sylib |
⊢ ( 𝜑 → ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) : ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ⟶ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
100 |
99
|
frnd |
⊢ ( 𝜑 → ran ( 𝑣 ∈ ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↦ ( 𝑣 ∩ 𝐴 ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
101 |
34 100
|
eqsstrd |
⊢ ( 𝜑 → ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
102 |
|
tgfiss |
⊢ ( ( ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ∈ Top ∧ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) → ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
103 |
27 101 102
|
syl2anc |
⊢ ( 𝜑 → ( topGen ‘ ( fi ‘ ( ( { 𝑋 } ∪ ( ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑤 𝑅 𝑧 } ) ∪ ran ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝑋 ∣ ¬ 𝑧 𝑅 𝑤 } ) ) ) ↾t 𝐴 ) ) ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
104 |
23 103
|
eqsstrd |
⊢ ( 𝜑 → ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ⊆ ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
105 |
11 104
|
eqssd |
⊢ ( 𝜑 → ( ordTop ‘ ( 𝑅 ∩ ( 𝐴 × 𝐴 ) ) ) = ( ( ordTop ‘ 𝑅 ) ↾t 𝐴 ) ) |