| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ordtNEW.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ordtNEW.l | 
							⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ordtrest2NEW.2 | 
							⊢ ( 𝜑  →  𝐾  ∈  Toset )  | 
						
						
							| 4 | 
							
								
							 | 
							ordtrest2NEW.3 | 
							⊢ ( 𝜑  →  𝐴  ⊆  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							ordtrest2NEW.4 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) }  ⊆  𝐴 )  | 
						
						
							| 6 | 
							
								
							 | 
							inrab2 | 
							⊢ ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  =  { 𝑤  ∈  ( 𝐵  ∩  𝐴 )  ∣  ¬  𝑤  ≤  𝑧 }  | 
						
						
							| 7 | 
							
								
							 | 
							sseqin2 | 
							⊢ ( 𝐴  ⊆  𝐵  ↔  ( 𝐵  ∩  𝐴 )  =  𝐴 )  | 
						
						
							| 8 | 
							
								4 7
							 | 
							sylib | 
							⊢ ( 𝜑  →  ( 𝐵  ∩  𝐴 )  =  𝐴 )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( 𝐵  ∩  𝐴 )  =  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							rabeq | 
							⊢ ( ( 𝐵  ∩  𝐴 )  =  𝐴  →  { 𝑤  ∈  ( 𝐵  ∩  𝐴 )  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 } )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  { 𝑤  ∈  ( 𝐵  ∩  𝐴 )  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 } )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							eqtrid | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 } )  | 
						
						
							| 13 | 
							
								
							 | 
							fvex | 
							⊢ ( le ‘ 𝐾 )  ∈  V  | 
						
						
							| 14 | 
							
								13
							 | 
							inex1 | 
							⊢ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  ∈  V  | 
						
						
							| 15 | 
							
								2 14
							 | 
							eqeltri | 
							⊢  ≤   ∈  V  | 
						
						
							| 16 | 
							
								15
							 | 
							inex1 | 
							⊢ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							⊢ ( 𝜑  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							ordttopon | 
							⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							tospos | 
							⊢ ( 𝐾  ∈  Toset  →  𝐾  ∈  Poset )  | 
						
						
							| 22 | 
							
								
							 | 
							posprs | 
							⊢ ( 𝐾  ∈  Poset  →  𝐾  ∈   Proset  )  | 
						
						
							| 23 | 
							
								3 21 22
							 | 
							3syl | 
							⊢ ( 𝜑  →  𝐾  ∈   Proset  )  | 
						
						
							| 24 | 
							
								1 2
							 | 
							prsssdm | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 )  | 
						
						
							| 25 | 
							
								23 4 24
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( TopOn ‘ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( TopOn ‘ 𝐴 ) )  | 
						
						
							| 27 | 
							
								20 26
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ 𝐴 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							toponmax | 
							⊢ ( ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  ( TopOn ‘ 𝐴 )  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							rabid2 | 
							⊢ ( 𝐴  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ↔  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧 )  | 
						
						
							| 32 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝐴  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  →  ( 𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylbir | 
							⊢ ( ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  →  ( 𝐴  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 34 | 
							
								30 33
							 | 
							syl5ibcom | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							dfrex2 | 
							⊢ ( ∃ 𝑤  ∈  𝐴 𝑤  ≤  𝑧  ↔  ¬  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧 )  | 
						
						
							| 36 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑤  =  𝑥  →  ( 𝑤  ≤  𝑧  ↔  𝑥  ≤  𝑧 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑤  ∈  𝐴 𝑤  ≤  𝑧  ↔  ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑧 )  | 
						
						
							| 38 | 
							
								35 37
							 | 
							bitr3i | 
							⊢ ( ¬  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  ↔  ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑧 )  | 
						
						
							| 39 | 
							
								
							 | 
							ordttop | 
							⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top )  | 
						
						
							| 40 | 
							
								17 39
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top )  | 
						
						
							| 42 | 
							
								
							 | 
							0opn | 
							⊢ ( ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ∈  Top  →  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							eleq1 | 
							⊢ ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  ∅  →  ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∅  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							syl5ibrcom | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  ∅  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							rabn0 | 
							⊢ ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ≠  ∅  ↔  ∃ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧 )  | 
						
						
							| 48 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ≤  𝑧  ↔  𝑦  ≤  𝑧 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							notbid | 
							⊢ ( 𝑤  =  𝑦  →  ( ¬  𝑤  ≤  𝑧  ↔  ¬  𝑦  ≤  𝑧 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  ↔  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑧 )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							bitri | 
							⊢ ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ≠  ∅  ↔  ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑧 )  | 
						
						
							| 52 | 
							
								3
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  𝐾  ∈  Toset )  | 
						
						
							| 53 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  𝐴  ⊆  𝐵 )  | 
						
						
							| 54 | 
							
								53
							 | 
							sselda | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  𝐵 )  | 
						
						
							| 55 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  𝑧  ∈  𝐵 )  | 
						
						
							| 56 | 
							
								1 2
							 | 
							trleile | 
							⊢ ( ( 𝐾  ∈  Toset  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( 𝑦  ≤  𝑧  ∨  𝑧  ≤  𝑦 ) )  | 
						
						
							| 57 | 
							
								52 54 55 56
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑦  ≤  𝑧  ∨  𝑧  ≤  𝑦 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							ord | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑦  ≤  𝑧  →  𝑧  ≤  𝑦 ) )  | 
						
						
							| 59 | 
							
								
							 | 
							an4 | 
							⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) )  | 
						
						
							| 60 | 
							
								
							 | 
							rabss | 
							⊢ ( { 𝑧  ∈  𝐵  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) }  ⊆  𝐴  ↔  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) )  | 
						
						
							| 61 | 
							
								5 60
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ∀ 𝑧  ∈  𝐵 ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							r19.21bi | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							an32s | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 ) )  →  ( ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 )  →  𝑧  ∈  𝐴 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							impr | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) ) )  →  𝑧  ∈  𝐴 )  | 
						
						
							| 65 | 
							
								59 64
							 | 
							sylan2b | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  𝑧  ∈  𝐴 )  | 
						
						
							| 66 | 
							
								
							 | 
							brinxp | 
							⊢ ( ( 𝑤  ∈  𝐴  ∧  𝑧  ∈  𝐴 )  →  ( 𝑤  ≤  𝑧  ↔  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							ancoms | 
							⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( 𝑤  ≤  𝑧  ↔  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							notbid | 
							⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑤  ∈  𝐴 )  →  ( ¬  𝑤  ≤  𝑧  ↔  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							rabbidva | 
							⊢ ( 𝑧  ∈  𝐴  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } )  | 
						
						
							| 70 | 
							
								65 69
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } )  | 
						
						
							| 71 | 
							
								25
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 )  | 
						
						
							| 72 | 
							
								
							 | 
							rabeq | 
							⊢ ( dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } )  | 
						
						
							| 73 | 
							
								71 72
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  =  { 𝑤  ∈  𝐴  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } )  | 
						
						
							| 74 | 
							
								70 73
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  =  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 } )  | 
						
						
							| 75 | 
							
								16
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V )  | 
						
						
							| 76 | 
							
								65 71
							 | 
							eleqtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  𝑧  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  | 
						
						
							| 77 | 
							
								18
							 | 
							ordtopn1 | 
							⊢ ( ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  ∧  𝑧  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 78 | 
							
								75 76 77
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑤 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 79 | 
							
								74 78
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑧  ≤  𝑦 ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 81 | 
							
								80
							 | 
							expr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑧  ≤  𝑦  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 82 | 
							
								58 81
							 | 
							syld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑦  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							rexlimdva | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ( ∃ 𝑦  ∈  𝐴 ¬  𝑦  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 84 | 
							
								51 83
							 | 
							biimtrid | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  ( { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ≠  ∅  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 85 | 
							
								46 84
							 | 
							pm2.61dne | 
							⊢ ( ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  ∧  𝑥  ≤  𝑧 ) )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							rexlimdvaa | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  𝐴 𝑥  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 87 | 
							
								38 86
							 | 
							biimtrid | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( ¬  ∀ 𝑤  ∈  𝐴 ¬  𝑤  ≤  𝑧  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 88 | 
							
								34 87
							 | 
							pm2.61d | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  { 𝑤  ∈  𝐴  ∣  ¬  𝑤  ≤  𝑧 }  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 89 | 
							
								12 88
							 | 
							eqeltrd | 
							⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  | 
						
						
							| 91 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ 𝐾 )  ∈  V  | 
						
						
							| 92 | 
							
								1 91
							 | 
							eqeltri | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 93 | 
							
								92
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐵  ∈  V )  | 
						
						
							| 94 | 
							
								
							 | 
							rabexg | 
							⊢ ( 𝐵  ∈  V  →  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							syl | 
							⊢ ( 𝜑  →  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V )  | 
						
						
							| 96 | 
							
								95
							 | 
							ralrimivw | 
							⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V )  | 
						
						
							| 97 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  =  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } )  | 
						
						
							| 98 | 
							
								
							 | 
							ineq1 | 
							⊢ ( 𝑣  =  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  →  ( 𝑣  ∩  𝐴 )  =  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							eleq1d | 
							⊢ ( 𝑣  =  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  →  ( ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							ralrnmptw | 
							⊢ ( ∀ 𝑧  ∈  𝐵 { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∈  V  →  ( ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 101 | 
							
								96 100
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ↔  ∀ 𝑧  ∈  𝐵 ( { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 }  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) ) )  | 
						
						
							| 102 | 
							
								90 101
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ∀ 𝑣  ∈  ran  ( 𝑧  ∈  𝐵  ↦  { 𝑤  ∈  𝐵  ∣  ¬  𝑤  ≤  𝑧 } ) ( 𝑣  ∩  𝐴 )  ∈  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) ) )  |