| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ordtNEW.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							ordtNEW.l | 
							⊢  ≤   =  ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fvex | 
							⊢ ( le ‘ 𝐾 )  ∈  V  | 
						
						
							| 4 | 
							
								3
							 | 
							inex1 | 
							⊢ ( ( le ‘ 𝐾 )  ∩  ( 𝐵  ×  𝐵 ) )  ∈  V  | 
						
						
							| 5 | 
							
								2 4
							 | 
							eqeltri | 
							⊢  ≤   ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							inex1 | 
							⊢ (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							⊢ dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  =  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  | 
						
						
							| 9 | 
							
								
							 | 
							eqid | 
							⊢ ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  =  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							ordtval | 
							⊢ ( (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  V  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) ) )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							mp1i | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  =  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ordttop | 
							⊢ (  ≤   ∈  V  →  ( ordTop ‘  ≤  )  ∈  Top )  | 
						
						
							| 13 | 
							
								5 12
							 | 
							ax-mp | 
							⊢ ( ordTop ‘  ≤  )  ∈  Top  | 
						
						
							| 14 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ 𝐾 )  ∈  V  | 
						
						
							| 15 | 
							
								1 14
							 | 
							eqeltri | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 16 | 
							
								15
							 | 
							ssex | 
							⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ∈  V )  | 
						
						
							| 17 | 
							
								
							 | 
							resttop | 
							⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V )  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top )  | 
						
						
							| 18 | 
							
								13 16 17
							 | 
							sylancr | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top )  | 
						
						
							| 20 | 
							
								1
							 | 
							ressprs | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝐾  ↾s  𝐴 )  ∈   Proset  )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							prsdm | 
							⊢ ( ( 𝐾  ↾s  𝐴 )  ∈   Proset   →  dom  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐾  ↾s  𝐴 )  =  ( 𝐾  ↾s  𝐴 )  | 
						
						
							| 26 | 
							
								25 1
							 | 
							ressbas2 | 
							⊢ ( 𝐴  ⊆  𝐵  →  𝐴  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							fvex | 
							⊢ ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ∈  V  | 
						
						
							| 28 | 
							
								26 27
							 | 
							eqeltrdi | 
							⊢ ( 𝐴  ⊆  𝐵  →  𝐴  ∈  V )  | 
						
						
							| 29 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							ressle | 
							⊢ ( 𝐴  ∈  V  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							syl | 
							⊢ ( 𝐴  ⊆  𝐵  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( le ‘ 𝐾 )  =  ( le ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 33 | 
							
								26
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐴  =  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							sqxpeqd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝐴  ×  𝐴 )  =  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) )  | 
						
						
							| 35 | 
							
								32 34
							 | 
							ineq12d | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							dmeqd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  dom  ( ( le ‘ ( 𝐾  ↾s  𝐴 ) )  ∩  ( ( Base ‘ ( 𝐾  ↾s  𝐴 ) )  ×  ( Base ‘ ( 𝐾  ↾s  𝐴 ) ) ) ) )  | 
						
						
							| 37 | 
							
								24 36 33
							 | 
							3eqtr4d | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) )  =  𝐴 )  | 
						
						
							| 38 | 
							
								1 2
							 | 
							prsss | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							dmeqd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  dom  ( ( le ‘ 𝐾 )  ∩  ( 𝐴  ×  𝐴 ) ) )  | 
						
						
							| 40 | 
							
								1 2
							 | 
							prsdm | 
							⊢ ( 𝐾  ∈   Proset   →  dom   ≤   =  𝐵 )  | 
						
						
							| 41 | 
							
								40
							 | 
							sseq2d | 
							⊢ ( 𝐾  ∈   Proset   →  ( 𝐴  ⊆  dom   ≤   ↔  𝐴  ⊆  𝐵 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							biimpar | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐴  ⊆  dom   ≤  )  | 
						
						
							| 43 | 
							
								
							 | 
							sseqin2 | 
							⊢ ( 𝐴  ⊆  dom   ≤   ↔  ( dom   ≤   ∩  𝐴 )  =  𝐴 )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							sylib | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( dom   ≤   ∩  𝐴 )  =  𝐴 )  | 
						
						
							| 45 | 
							
								37 39 44
							 | 
							3eqtr4d | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( dom   ≤   ∩  𝐴 ) )  | 
						
						
							| 46 | 
							
								5 12
							 | 
							mp1i | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘  ≤  )  ∈  Top )  | 
						
						
							| 47 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐴  ∈  V )  | 
						
						
							| 48 | 
							
								
							 | 
							eqid | 
							⊢ dom   ≤   =  dom   ≤   | 
						
						
							| 49 | 
							
								48
							 | 
							ordttopon | 
							⊢ (  ≤   ∈  V  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  ) )  | 
						
						
							| 50 | 
							
								5 49
							 | 
							mp1i | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  ) )  | 
						
						
							| 51 | 
							
								
							 | 
							toponmax | 
							⊢ ( ( ordTop ‘  ≤  )  ∈  ( TopOn ‘ dom   ≤  )  →  dom   ≤   ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom   ≤   ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 53 | 
							
								
							 | 
							elrestr | 
							⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V  ∧  dom   ≤   ∈  ( ordTop ‘  ≤  ) )  →  ( dom   ≤   ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 54 | 
							
								46 47 52 53
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( dom   ≤   ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 55 | 
							
								45 54
							 | 
							eqeltrd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							snssd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 57 | 
							
								
							 | 
							rabeq | 
							⊢ ( dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( dom   ≤   ∩  𝐴 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  | 
						
						
							| 58 | 
							
								45 57
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  | 
						
						
							| 59 | 
							
								45 58
							 | 
							mpteq12dv | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  =  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							rneqd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  =  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) )  | 
						
						
							| 61 | 
							
								
							 | 
							inrab2 | 
							⊢ ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦  ≤  𝑥 }  | 
						
						
							| 62 | 
							
								
							 | 
							inss2 | 
							⊢ ( dom   ≤   ∩  𝐴 )  ⊆  𝐴  | 
						
						
							| 63 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  | 
						
						
							| 64 | 
							
								62 63
							 | 
							sselid | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑦  ∈  𝐴 )  | 
						
						
							| 65 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  | 
						
						
							| 66 | 
							
								62 65
							 | 
							sselid | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 67 | 
							
								66
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 68 | 
							
								
							 | 
							brinxp | 
							⊢ ( ( 𝑦  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  ≤  𝑥  ↔  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) )  | 
						
						
							| 69 | 
							
								64 67 68
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( 𝑦  ≤  𝑥  ↔  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							notbid | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( ¬  𝑦  ≤  𝑥  ↔  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							rabbidva | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦  ≤  𝑥 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  | 
						
						
							| 72 | 
							
								61 71
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  | 
						
						
							| 73 | 
							
								5 12
							 | 
							mp1i | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( ordTop ‘  ≤  )  ∈  Top )  | 
						
						
							| 74 | 
							
								47
							 | 
							adantr | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  𝐴  ∈  V )  | 
						
						
							| 75 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  𝐾  ∈   Proset  )  | 
						
						
							| 76 | 
							
								
							 | 
							inss1 | 
							⊢ ( dom   ≤   ∩  𝐴 )  ⊆  dom   ≤   | 
						
						
							| 77 | 
							
								76
							 | 
							sseli | 
							⊢ ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  →  𝑥  ∈  dom   ≤  )  | 
						
						
							| 78 | 
							
								48
							 | 
							ordtopn1 | 
							⊢ ( (  ≤   ∈  V  ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 79 | 
							
								5 78
							 | 
							mpan | 
							⊢ ( 𝑥  ∈  dom   ≤   →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 81 | 
							
								75 77 80
							 | 
							syl2an | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 82 | 
							
								
							 | 
							elrestr | 
							⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V  ∧  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∈  ( ordTop ‘  ≤  ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 83 | 
							
								73 74 81 82
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑦  ≤  𝑥 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 84 | 
							
								72 83
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 }  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							fmpttd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } ) : ( dom   ≤   ∩  𝐴 ) ⟶ ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							frnd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 87 | 
							
								60 86
							 | 
							eqsstrd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							rabeq | 
							⊢ ( dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  =  ( dom   ≤   ∩  𝐴 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  | 
						
						
							| 89 | 
							
								45 88
							 | 
							syl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  | 
						
						
							| 90 | 
							
								45 89
							 | 
							mpteq12dv | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  =  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							rneqd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  =  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) )  | 
						
						
							| 92 | 
							
								
							 | 
							inrab2 | 
							⊢ ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥  ≤  𝑦 }  | 
						
						
							| 93 | 
							
								
							 | 
							brinxp | 
							⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ≤  𝑦  ↔  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 ) )  | 
						
						
							| 94 | 
							
								67 64 93
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( 𝑥  ≤  𝑦  ↔  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							notbid | 
							⊢ ( ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  ∧  𝑦  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( ¬  𝑥  ≤  𝑦  ↔  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							rabbidva | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥  ≤  𝑦 }  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  | 
						
						
							| 97 | 
							
								92 96
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  =  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  | 
						
						
							| 98 | 
							
								48
							 | 
							ordtopn2 | 
							⊢ ( (  ≤   ∈  V  ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 99 | 
							
								5 98
							 | 
							mpan | 
							⊢ ( 𝑥  ∈  dom   ≤   →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							adantl | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝑥  ∈  dom   ≤  )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 101 | 
							
								75 77 100
							 | 
							syl2an | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) )  | 
						
						
							| 102 | 
							
								
							 | 
							elrestr | 
							⊢ ( ( ( ordTop ‘  ≤  )  ∈  Top  ∧  𝐴  ∈  V  ∧  { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∈  ( ordTop ‘  ≤  ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 103 | 
							
								73 74 101 102
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  ( { 𝑦  ∈  dom   ≤   ∣  ¬  𝑥  ≤  𝑦 }  ∩  𝐴 )  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 104 | 
							
								97 103
							 | 
							eqeltrrd | 
							⊢ ( ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  ∧  𝑥  ∈  ( dom   ≤   ∩  𝐴 ) )  →  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 }  ∈  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							fmpttd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) : ( dom   ≤   ∩  𝐴 ) ⟶ ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							frnd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  ( dom   ≤   ∩  𝐴 )  ↦  { 𝑦  ∈  ( dom   ≤   ∩  𝐴 )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 107 | 
							
								91 106
							 | 
							eqsstrd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 108 | 
							
								87 107
							 | 
							unssd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 109 | 
							
								56 108
							 | 
							unssd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 110 | 
							
								
							 | 
							tgfiss | 
							⊢ ( ( ( ( ordTop ‘  ≤  )  ↾t  𝐴 )  ∈  Top  ∧  ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  →  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 111 | 
							
								19 109 110
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( topGen ‘ ( fi ‘ ( { dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) }  ∪  ( ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑦 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑥 } )  ∪  ran  ( 𝑥  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ↦  { 𝑦  ∈  dom  (  ≤   ∩  ( 𝐴  ×  𝐴 ) )  ∣  ¬  𝑥 (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) 𝑦 } ) ) ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  | 
						
						
							| 112 | 
							
								11 111
							 | 
							eqsstrd | 
							⊢ ( ( 𝐾  ∈   Proset   ∧  𝐴  ⊆  𝐵 )  →  ( ordTop ‘ (  ≤   ∩  ( 𝐴  ×  𝐴 ) ) )  ⊆  ( ( ordTop ‘  ≤  )  ↾t  𝐴 ) )  |