Step |
Hyp |
Ref |
Expression |
1 |
|
ordsseleq |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
2 |
|
ordn2lp |
⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) |
3 |
|
imnan |
⊢ ( ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ↔ ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) |
4 |
2 3
|
sylibr |
⊢ ( Ord 𝐴 → ( 𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
5 |
|
ordirr |
⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) |
6 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵 ) ) |
7 |
6
|
notbid |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵 ) ) |
8 |
5 7
|
syl5ibrcom |
⊢ ( Ord 𝐵 → ( 𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
9 |
4 8
|
jaao |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
10 |
|
ordtri3or |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
11 |
|
df-3or |
⊢ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ∈ 𝐴 ) ) |
12 |
10 11
|
sylib |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ∨ 𝐵 ∈ 𝐴 ) ) |
13 |
12
|
orcomd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ∨ ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
14 |
13
|
ord |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐵 ∈ 𝐴 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
15 |
9 14
|
impbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ¬ 𝐵 ∈ 𝐴 ) ) |
16 |
1 15
|
bitrd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) |