Step |
Hyp |
Ref |
Expression |
1 |
|
ordsseleq |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) ) |
2 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
3 |
2
|
orbi2i |
⊢ ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ) |
4 |
|
orcom |
⊢ ( ( 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
5 |
3 4
|
bitri |
⊢ ( ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |
6 |
1 5
|
bitrdi |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
7 |
|
ordtri1 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
8 |
6 7
|
bitr3d |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
9 |
8
|
ancoms |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
10 |
9
|
con2bid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |