Description: A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtri2or | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri1 | ⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) | |
2 | 1 | ancoms | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵 ) ) |
3 | 2 | biimprd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐴 ∈ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
4 | 3 | orrd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |