Metamath Proof Explorer


Theorem ordtri2or

Description: A trichotomy law for ordinal classes. (Contributed by NM, 13-Sep-2003) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Assertion ordtri2or ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordtri1 ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
2 1 ancoms ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
3 2 biimprd ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ 𝐴𝐵𝐵𝐴 ) )
4 3 orrd ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )