Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtri2or2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) | |
2 | ordelss | ⊢ ( ( Ord 𝐵 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ⊆ 𝐵 ) | |
3 | 2 | ex | ⊢ ( Ord 𝐵 → ( 𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
4 | 3 | orim1d | ⊢ ( Ord 𝐵 → ( ( 𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ) |
5 | 4 | adantl | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ) |
6 | 1 5 | mpd | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |