Metamath Proof Explorer


Theorem ordtri2or2

Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003)

Ref Expression
Assertion ordtri2or2 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 ordtri2or ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )
2 ordelss ( ( Ord 𝐵𝐴𝐵 ) → 𝐴𝐵 )
3 2 ex ( Ord 𝐵 → ( 𝐴𝐵𝐴𝐵 ) )
4 3 orim1d ( Ord 𝐵 → ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝐴𝐵𝐵𝐴 ) ) )
5 4 adantl ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝐴𝐵𝐵𝐴 ) ) )
6 1 5 mpd ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )