Metamath Proof Explorer


Theorem ordtri2or3

Description: A consequence of total ordering for ordinal classes. Similar to ordtri2or2 . (Contributed by David Moews, 1-May-2017)

Ref Expression
Assertion ordtri2or3 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴𝐵 ) ∨ 𝐵 = ( 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ordtri2or2 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐵𝐴 ) )
2 dfss ( 𝐴𝐵𝐴 = ( 𝐴𝐵 ) )
3 sseqin2 ( 𝐵𝐴 ↔ ( 𝐴𝐵 ) = 𝐵 )
4 eqcom ( ( 𝐴𝐵 ) = 𝐵𝐵 = ( 𝐴𝐵 ) )
5 3 4 bitri ( 𝐵𝐴𝐵 = ( 𝐴𝐵 ) )
6 2 5 orbi12i ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( 𝐴 = ( 𝐴𝐵 ) ∨ 𝐵 = ( 𝐴𝐵 ) ) )
7 1 6 sylib ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴𝐵 ) ∨ 𝐵 = ( 𝐴𝐵 ) ) )