Description: A consequence of total ordering for ordinal classes. Similar to ordtri2or2 . (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtri2or3 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or2 | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) | |
2 | dfss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝐴 = ( 𝐴 ∩ 𝐵 ) ) | |
3 | sseqin2 | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐵 ) | |
4 | eqcom | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐵 ↔ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) | |
5 | 3 4 | bitri | ⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) |
6 | 2 5 | orbi12i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |
7 | 1 6 | sylib | ⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = ( 𝐴 ∩ 𝐵 ) ∨ 𝐵 = ( 𝐴 ∩ 𝐵 ) ) ) |