Step |
Hyp |
Ref |
Expression |
1 |
|
ordirr |
⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) |
2 |
1
|
adantl |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ¬ 𝐵 ∈ 𝐵 ) |
3 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵 ) ) |
4 |
3
|
notbid |
⊢ ( 𝐴 = 𝐵 → ( ¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵 ) ) |
5 |
2 4
|
syl5ibrcom |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴 ) ) |
6 |
5
|
pm4.71d |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴 ) ) ) |
7 |
|
pm5.61 |
⊢ ( ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∧ ¬ 𝐵 ∈ 𝐴 ) ↔ ( 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴 ) ) |
8 |
|
pm4.52 |
⊢ ( ( ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∧ ¬ 𝐵 ∈ 𝐴 ) ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) |
9 |
7 8
|
bitr3i |
⊢ ( ( 𝐴 = 𝐵 ∧ ¬ 𝐵 ∈ 𝐴 ) ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) |
10 |
6 9
|
bitrdi |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) ) |
11 |
|
ordtri2 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |
12 |
11
|
orbi1d |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) ) |
13 |
12
|
notbid |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ¬ ( ¬ ( 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ∨ 𝐵 ∈ 𝐴 ) ) ) |
14 |
10 13
|
bitr4d |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ¬ ( 𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) ) |