| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordin |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∩ 𝐵 ) ) |
| 2 |
|
ordirr |
⊢ ( Ord ( 𝐴 ∩ 𝐵 ) → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ) |
| 4 |
|
ianor |
⊢ ( ¬ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) ↔ ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ¬ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) ) |
| 5 |
|
elin |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ) |
| 6 |
|
incom |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) |
| 7 |
6
|
eleq1i |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ↔ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) |
| 8 |
7
|
anbi2i |
⊢ ( ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐴 ∩ 𝐵 ) ∈ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) ) |
| 9 |
5 8
|
bitri |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∧ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) ) |
| 10 |
4 9
|
xchnxbir |
⊢ ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ¬ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) ) |
| 11 |
3 10
|
sylib |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ¬ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) ) |
| 12 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 13 |
|
ordsseleq |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ↔ ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) ) |
| 14 |
12 13
|
mpbii |
⊢ ( ( Ord ( 𝐴 ∩ 𝐵 ) ∧ Ord 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) |
| 15 |
1 14
|
sylan |
⊢ ( ( ( Ord 𝐴 ∧ Ord 𝐵 ) ∧ Ord 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) |
| 16 |
15
|
anabss1 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) |
| 17 |
16
|
ord |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) ) |
| 18 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 19 |
17 18
|
imbitrrdi |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 → 𝐴 ⊆ 𝐵 ) ) |
| 20 |
|
ordin |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → Ord ( 𝐵 ∩ 𝐴 ) ) |
| 21 |
|
inss1 |
⊢ ( 𝐵 ∩ 𝐴 ) ⊆ 𝐵 |
| 22 |
|
ordsseleq |
⊢ ( ( Ord ( 𝐵 ∩ 𝐴 ) ∧ Ord 𝐵 ) → ( ( 𝐵 ∩ 𝐴 ) ⊆ 𝐵 ↔ ( ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ∨ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) ) ) |
| 23 |
21 22
|
mpbii |
⊢ ( ( Ord ( 𝐵 ∩ 𝐴 ) ∧ Ord 𝐵 ) → ( ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ∨ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) ) |
| 24 |
20 23
|
sylan |
⊢ ( ( ( Ord 𝐵 ∧ Ord 𝐴 ) ∧ Ord 𝐵 ) → ( ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ∨ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) ) |
| 25 |
24
|
anabss4 |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ∨ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) ) |
| 26 |
25
|
ord |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 → ( 𝐵 ∩ 𝐴 ) = 𝐵 ) ) |
| 27 |
|
dfss2 |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∩ 𝐴 ) = 𝐵 ) |
| 28 |
26 27
|
imbitrrdi |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ¬ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 → 𝐵 ⊆ 𝐴 ) ) |
| 29 |
19 28
|
orim12d |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( ¬ ( 𝐴 ∩ 𝐵 ) ∈ 𝐴 ∨ ¬ ( 𝐵 ∩ 𝐴 ) ∈ 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) ) |
| 30 |
11 29
|
mpd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ) |
| 31 |
|
sspsstri |
⊢ ( ( 𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴 ) ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |
| 32 |
30 31
|
sylib |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) |
| 33 |
|
ordelpss |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ↔ 𝐴 ⊊ 𝐵 ) ) |
| 34 |
|
biidd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 35 |
|
ordelpss |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
| 36 |
35
|
ancoms |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵 ∈ 𝐴 ↔ 𝐵 ⊊ 𝐴 ) ) |
| 37 |
33 34 36
|
3orbi123d |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ↔ ( 𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴 ) ) ) |
| 38 |
32 37
|
mpbird |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴 ) ) |