Metamath Proof Explorer


Theorem ordtri4

Description: A trichotomy law for ordinals. (Contributed by NM, 1-Nov-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ordtri4 ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
2 ordtri1 ( ( Ord 𝐵 ∧ Ord 𝐴 ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
3 2 ancoms ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐵𝐴 ↔ ¬ 𝐴𝐵 ) )
4 3 anbi2d ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴𝐵𝐵𝐴 ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ) )
5 1 4 syl5bb ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ) )