Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordttop | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ Top ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
2 | 1 | ordttopon | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) ) |
3 | topontop | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) → ( ordTop ‘ 𝑅 ) ∈ Top ) | |
4 | 2 3 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ Top ) |