Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordttop | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ Top ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | ⊢ dom 𝑅 = dom 𝑅 | |
| 2 | 1 | ordttopon | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) ) | 
| 3 | topontop | ⊢ ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) → ( ordTop ‘ 𝑅 ) ∈ Top ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) ∈ Top ) |