Metamath Proof Explorer


Theorem ordttop

Description: The order topology is a topology. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion ordttop ( 𝑅𝑉 → ( ordTop ‘ 𝑅 ) ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid dom 𝑅 = dom 𝑅
2 1 ordttopon ( 𝑅𝑉 → ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) )
3 topontop ( ( ordTop ‘ 𝑅 ) ∈ ( TopOn ‘ dom 𝑅 ) → ( ordTop ‘ 𝑅 ) ∈ Top )
4 2 3 syl ( 𝑅𝑉 → ( ordTop ‘ 𝑅 ) ∈ Top )