Step |
Hyp |
Ref |
Expression |
1 |
|
ordtval.1 |
⊢ 𝑋 = dom 𝑅 |
2 |
|
ordtval.2 |
⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
3 |
|
ordtval.3 |
⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
4 |
|
dmexg |
⊢ ( 𝑅 ∈ 𝑉 → dom 𝑅 ∈ V ) |
5 |
1 4
|
eqeltrid |
⊢ ( 𝑅 ∈ 𝑉 → 𝑋 ∈ V ) |
6 |
|
unisng |
⊢ ( 𝑋 ∈ V → ∪ { 𝑋 } = 𝑋 ) |
7 |
5 6
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ∪ { 𝑋 } = 𝑋 ) |
8 |
7
|
uneq1d |
⊢ ( 𝑅 ∈ 𝑉 → ( ∪ { 𝑋 } ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) = ( 𝑋 ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
9 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 |
10 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ V ) |
11 |
|
elpw2g |
⊢ ( 𝑋 ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ⊆ 𝑋 ) ) |
13 |
9 12
|
mpbiri |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ∈ 𝒫 𝑋 ) |
14 |
13
|
fmpttd |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
15 |
14
|
frnd |
⊢ ( 𝑅 ∈ 𝑉 → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ⊆ 𝒫 𝑋 ) |
16 |
2 15
|
eqsstrid |
⊢ ( 𝑅 ∈ 𝑉 → 𝐴 ⊆ 𝒫 𝑋 ) |
17 |
|
ssrab2 |
⊢ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ⊆ 𝑋 |
18 |
|
elpw2g |
⊢ ( 𝑋 ∈ V → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ⊆ 𝑋 ) ) |
19 |
10 18
|
syl |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → ( { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ⊆ 𝑋 ) ) |
20 |
17 19
|
mpbiri |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝑋 ) → { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ∈ 𝒫 𝑋 ) |
21 |
20
|
fmpttd |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) : 𝑋 ⟶ 𝒫 𝑋 ) |
22 |
21
|
frnd |
⊢ ( 𝑅 ∈ 𝑉 → ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ⊆ 𝒫 𝑋 ) |
23 |
3 22
|
eqsstrid |
⊢ ( 𝑅 ∈ 𝑉 → 𝐵 ⊆ 𝒫 𝑋 ) |
24 |
16 23
|
unssd |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝑋 ) |
25 |
|
sspwuni |
⊢ ( ( 𝐴 ∪ 𝐵 ) ⊆ 𝒫 𝑋 ↔ ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
26 |
24 25
|
sylib |
⊢ ( 𝑅 ∈ 𝑉 → ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ) |
27 |
|
ssequn2 |
⊢ ( ∪ ( 𝐴 ∪ 𝐵 ) ⊆ 𝑋 ↔ ( 𝑋 ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝑋 ) |
28 |
26 27
|
sylib |
⊢ ( 𝑅 ∈ 𝑉 → ( 𝑋 ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) = 𝑋 ) |
29 |
8 28
|
eqtr2d |
⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ( ∪ { 𝑋 } ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
30 |
|
uniun |
⊢ ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) = ( ∪ { 𝑋 } ∪ ∪ ( 𝐴 ∪ 𝐵 ) ) |
31 |
29 30
|
eqtr4di |
⊢ ( 𝑅 ∈ 𝑉 → 𝑋 = ∪ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |