Step |
Hyp |
Ref |
Expression |
1 |
|
ordtval.1 |
⊢ 𝑋 = dom 𝑅 |
2 |
|
ordtval.2 |
⊢ 𝐴 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
3 |
|
ordtval.3 |
⊢ 𝐵 = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
4 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
5 |
|
dmeq |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = dom 𝑅 ) |
6 |
5 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → dom 𝑟 = 𝑋 ) |
7 |
6
|
sneqd |
⊢ ( 𝑟 = 𝑅 → { dom 𝑟 } = { 𝑋 } ) |
8 |
|
rnun |
⊢ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) = ( ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) |
9 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑦 𝑟 𝑥 ↔ 𝑦 𝑅 𝑥 ) ) |
10 |
9
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑦 𝑟 𝑥 ↔ ¬ 𝑦 𝑅 𝑥 ) ) |
11 |
6 10
|
rabeqbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) |
12 |
6 11
|
mpteq12dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
13 |
12
|
rneqd |
⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑦 𝑅 𝑥 } ) ) |
14 |
13 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) = 𝐴 ) |
15 |
|
breq |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 𝑟 𝑦 ↔ 𝑥 𝑅 𝑦 ) ) |
16 |
15
|
notbid |
⊢ ( 𝑟 = 𝑅 → ( ¬ 𝑥 𝑟 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
17 |
6 16
|
rabeqbidv |
⊢ ( 𝑟 = 𝑅 → { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } = { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) |
18 |
6 17
|
mpteq12dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
19 |
18
|
rneqd |
⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) = ran ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝑋 ∣ ¬ 𝑥 𝑅 𝑦 } ) ) |
20 |
19 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) = 𝐵 ) |
21 |
14 20
|
uneq12d |
⊢ ( 𝑟 = 𝑅 → ( ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ran ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) = ( 𝐴 ∪ 𝐵 ) ) |
22 |
8 21
|
syl5eq |
⊢ ( 𝑟 = 𝑅 → ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) = ( 𝐴 ∪ 𝐵 ) ) |
23 |
7 22
|
uneq12d |
⊢ ( 𝑟 = 𝑅 → ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) = ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) = ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝑟 = 𝑅 → ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
26 |
|
df-ordt |
⊢ ordTop = ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) |
27 |
|
fvex |
⊢ ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ∈ V |
28 |
25 26 27
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |
29 |
4 28
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( ordTop ‘ 𝑅 ) = ( topGen ‘ ( fi ‘ ( { 𝑋 } ∪ ( 𝐴 ∪ 𝐵 ) ) ) ) ) |