Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
⊢ 𝐹 = recs ( 𝐺 ) |
2 |
|
ordtypelem.2 |
⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
3 |
|
ordtypelem.3 |
⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) |
4 |
|
breq1 |
⊢ ( 𝑢 = 𝑟 → ( 𝑢 𝑅 𝑣 ↔ 𝑟 𝑅 𝑣 ) ) |
5 |
4
|
notbid |
⊢ ( 𝑢 = 𝑟 → ( ¬ 𝑢 𝑅 𝑣 ↔ ¬ 𝑟 𝑅 𝑣 ) ) |
6 |
5
|
cbvralvw |
⊢ ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑣 ) |
7 |
|
breq2 |
⊢ ( 𝑣 = 𝑠 → ( 𝑟 𝑅 𝑣 ↔ 𝑟 𝑅 𝑠 ) ) |
8 |
7
|
notbid |
⊢ ( 𝑣 = 𝑠 → ( ¬ 𝑟 𝑅 𝑣 ↔ ¬ 𝑟 𝑅 𝑠 ) ) |
9 |
8
|
ralbidv |
⊢ ( 𝑣 = 𝑠 → ( ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑣 ↔ ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) ) |
10 |
6 9
|
syl5bb |
⊢ ( 𝑣 = 𝑠 → ( ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ↔ ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) ) |
11 |
10
|
cbvriotavw |
⊢ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑠 ∈ 𝐶 ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) |
12 |
|
breq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 𝑅 𝑤 ↔ 𝑖 𝑅 𝑤 ) ) |
13 |
12
|
cbvralvw |
⊢ ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑤 ) |
14 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑖 𝑅 𝑤 ↔ 𝑖 𝑅 𝑦 ) ) |
15 |
14
|
ralbidv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑤 ↔ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 ) ) |
16 |
13 15
|
syl5bb |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 ↔ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 ) ) |
17 |
16
|
cbvrabv |
⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 } |
18 |
2 17
|
eqtri |
⊢ 𝐶 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 } |
19 |
|
rneq |
⊢ ( ℎ = 𝑓 → ran ℎ = ran 𝑓 ) |
20 |
19
|
raleqdv |
⊢ ( ℎ = 𝑓 → ( ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 ↔ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 ) ) |
21 |
20
|
rabbidv |
⊢ ( ℎ = 𝑓 → { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran ℎ 𝑖 𝑅 𝑦 } = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ) |
22 |
18 21
|
eqtrid |
⊢ ( ℎ = 𝑓 → 𝐶 = { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ) |
23 |
22
|
raleqdv |
⊢ ( ℎ = 𝑓 → ( ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ↔ ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
24 |
22 23
|
riotaeqbidv |
⊢ ( ℎ = 𝑓 → ( ℩ 𝑠 ∈ 𝐶 ∀ 𝑟 ∈ 𝐶 ¬ 𝑟 𝑅 𝑠 ) = ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
25 |
11 24
|
eqtrid |
⊢ ( ℎ = 𝑓 → ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) = ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
26 |
25
|
cbvmptv |
⊢ ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) = ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
27 |
3 26
|
eqtri |
⊢ 𝐺 = ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) |
28 |
|
recseq |
⊢ ( 𝐺 = ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) → recs ( 𝐺 ) = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) ) |
29 |
27 28
|
ax-mp |
⊢ recs ( 𝐺 ) = recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) |
30 |
1 29
|
eqtr2i |
⊢ recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) = 𝐹 |