| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtypelem.1 |
⊢ 𝐹 = recs ( 𝐺 ) |
| 2 |
|
ordtypelem.2 |
⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
| 3 |
|
ordtypelem.3 |
⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) |
| 4 |
|
ordtypelem.5 |
⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } |
| 5 |
|
ordtypelem.6 |
⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) |
| 6 |
|
ordtypelem.7 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
| 7 |
|
ordtypelem.8 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
| 8 |
|
iftrue |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) = ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) ) |
| 9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) = ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) ) |
| 10 |
2 3 1
|
dfoi |
⊢ OrdIso ( 𝑅 , 𝐴 ) = if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) |
| 11 |
5 10
|
eqtri |
⊢ 𝑂 = if ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) , ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) , ∅ ) |
| 12 |
4
|
reseq2i |
⊢ ( 𝐹 ↾ 𝑇 ) = ( 𝐹 ↾ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } ) |
| 13 |
9 11 12
|
3eqtr4g |
⊢ ( 𝜑 → 𝑂 = ( 𝐹 ↾ 𝑇 ) ) |