Step |
Hyp |
Ref |
Expression |
1 |
|
ordtypelem.1 |
⊢ 𝐹 = recs ( 𝐺 ) |
2 |
|
ordtypelem.2 |
⊢ 𝐶 = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } |
3 |
|
ordtypelem.3 |
⊢ 𝐺 = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ 𝐶 ∀ 𝑢 ∈ 𝐶 ¬ 𝑢 𝑅 𝑣 ) ) |
4 |
|
ordtypelem.5 |
⊢ 𝑇 = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( 𝐹 “ 𝑥 ) 𝑧 𝑅 𝑡 } |
5 |
|
ordtypelem.6 |
⊢ 𝑂 = OrdIso ( 𝑅 , 𝐴 ) |
6 |
|
ordtypelem.7 |
⊢ ( 𝜑 → 𝑅 We 𝐴 ) |
7 |
|
ordtypelem.8 |
⊢ ( 𝜑 → 𝑅 Se 𝐴 ) |
8 |
1 2 3 4 5 6 7
|
ordtypelem8 |
⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
9 |
1 2 3 4 5 6 7
|
ordtypelem4 |
⊢ ( 𝜑 → 𝑂 : ( 𝑇 ∩ dom 𝐹 ) ⟶ 𝐴 ) |
10 |
9
|
frnd |
⊢ ( 𝜑 → ran 𝑂 ⊆ 𝐴 ) |
11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑏 ∈ 𝐴 ) |
12 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑅 We 𝐴 ) |
13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑅 Se 𝐴 ) |
14 |
9
|
ffund |
⊢ ( 𝜑 → Fun 𝑂 ) |
15 |
14
|
funfnd |
⊢ ( 𝜑 → 𝑂 Fn dom 𝑂 ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 Fn dom 𝑂 ) |
17 |
1 2 3 4 5 12 13
|
ordtypelem8 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ) |
18 |
|
isof1o |
⊢ ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) → 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 ) |
19 |
|
f1of1 |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ ran 𝑂 → 𝑂 : dom 𝑂 –1-1→ ran 𝑂 ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 : dom 𝑂 –1-1→ ran 𝑂 ) |
21 |
|
simpl |
⊢ ( ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) → 𝑏 ∈ 𝐴 ) |
22 |
|
seex |
⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑏 ∈ 𝐴 ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ∈ V ) |
23 |
7 21 22
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ∈ V ) |
24 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 ⊆ 𝐴 ) |
25 |
|
rexnal |
⊢ ( ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ↔ ¬ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) |
26 |
1 2 3 4 5 6 7
|
ordtypelem7 |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑚 ∈ dom 𝑂 ) → ( ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ∨ 𝑏 ∈ ran 𝑂 ) ) |
27 |
26
|
ord |
⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑚 ∈ dom 𝑂 ) → ( ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
28 |
27
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ∃ 𝑚 ∈ dom 𝑂 ¬ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
29 |
25 28
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 → 𝑏 ∈ ran 𝑂 ) ) |
30 |
29
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ 𝑏 ∈ ran 𝑂 → ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
31 |
30
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) |
32 |
|
breq1 |
⊢ ( 𝑐 = ( 𝑂 ‘ 𝑚 ) → ( 𝑐 𝑅 𝑏 ↔ ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
33 |
32
|
ralrn |
⊢ ( 𝑂 Fn dom 𝑂 → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
34 |
16 33
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ( ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ↔ ∀ 𝑚 ∈ dom 𝑂 ( 𝑂 ‘ 𝑚 ) 𝑅 𝑏 ) ) |
35 |
31 34
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ) |
36 |
|
ssrab |
⊢ ( ran 𝑂 ⊆ { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ↔ ( ran 𝑂 ⊆ 𝐴 ∧ ∀ 𝑐 ∈ ran 𝑂 𝑐 𝑅 𝑏 ) ) |
37 |
24 35 36
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 ⊆ { 𝑐 ∈ 𝐴 ∣ 𝑐 𝑅 𝑏 } ) |
38 |
23 37
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 ∈ V ) |
39 |
|
f1dmex |
⊢ ( ( 𝑂 : dom 𝑂 –1-1→ ran 𝑂 ∧ ran 𝑂 ∈ V ) → dom 𝑂 ∈ V ) |
40 |
20 38 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → dom 𝑂 ∈ V ) |
41 |
16 40
|
fnexd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 ∈ V ) |
42 |
1 2 3 4 5 12 13 41
|
ordtypelem9 |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |
43 |
|
isof1o |
⊢ ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) → 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 ) |
44 |
|
f1ofo |
⊢ ( 𝑂 : dom 𝑂 –1-1-onto→ 𝐴 → 𝑂 : dom 𝑂 –onto→ 𝐴 ) |
45 |
|
forn |
⊢ ( 𝑂 : dom 𝑂 –onto→ 𝐴 → ran 𝑂 = 𝐴 ) |
46 |
42 43 44 45
|
4syl |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → ran 𝑂 = 𝐴 ) |
47 |
11 46
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑏 ∈ 𝐴 ∧ ¬ 𝑏 ∈ ran 𝑂 ) ) → 𝑏 ∈ ran 𝑂 ) |
48 |
47
|
expr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → ( ¬ 𝑏 ∈ ran 𝑂 → 𝑏 ∈ ran 𝑂 ) ) |
49 |
48
|
pm2.18d |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐴 ) → 𝑏 ∈ ran 𝑂 ) |
50 |
10 49
|
eqelssd |
⊢ ( 𝜑 → ran 𝑂 = 𝐴 ) |
51 |
|
isoeq5 |
⊢ ( ran 𝑂 = 𝐴 → ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ↔ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) ) |
52 |
50 51
|
syl |
⊢ ( 𝜑 → ( 𝑂 Isom E , 𝑅 ( dom 𝑂 , ran 𝑂 ) ↔ 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) ) |
53 |
8 52
|
mpbid |
⊢ ( 𝜑 → 𝑂 Isom E , 𝑅 ( dom 𝑂 , 𝐴 ) ) |