Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) |
2 |
|
ordequn |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) ) ) |
3 |
1 2
|
mpi |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) ) |
4 |
|
ordeq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord 𝐴 ) ) |
5 |
4
|
biimprcd |
⊢ ( Ord 𝐴 → ( ( 𝐴 ∪ 𝐵 ) = 𝐴 → Ord ( 𝐴 ∪ 𝐵 ) ) ) |
6 |
|
ordeq |
⊢ ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → ( Ord ( 𝐴 ∪ 𝐵 ) ↔ Ord 𝐵 ) ) |
7 |
6
|
biimprcd |
⊢ ( Ord 𝐵 → ( ( 𝐴 ∪ 𝐵 ) = 𝐵 → Ord ( 𝐴 ∪ 𝐵 ) ) ) |
8 |
5 7
|
jaao |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → ( ( ( 𝐴 ∪ 𝐵 ) = 𝐴 ∨ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) ) |
9 |
3 8
|
mpd |
⊢ ( ( Ord 𝐴 ∧ Ord 𝐵 ) → Ord ( 𝐴 ∪ 𝐵 ) ) |