Metamath Proof Explorer


Theorem ordunel

Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion ordunel ( ( Ord 𝐴𝐵𝐴𝐶𝐴 ) → ( 𝐵𝐶 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 prssi ( ( 𝐵𝐴𝐶𝐴 ) → { 𝐵 , 𝐶 } ⊆ 𝐴 )
2 1 3adant1 ( ( Ord 𝐴𝐵𝐴𝐶𝐴 ) → { 𝐵 , 𝐶 } ⊆ 𝐴 )
3 ordelon ( ( Ord 𝐴𝐵𝐴 ) → 𝐵 ∈ On )
4 3 3adant3 ( ( Ord 𝐴𝐵𝐴𝐶𝐴 ) → 𝐵 ∈ On )
5 ordelon ( ( Ord 𝐴𝐶𝐴 ) → 𝐶 ∈ On )
6 ordunpr ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 ) ∈ { 𝐵 , 𝐶 } )
7 4 5 6 3imp3i2an ( ( Ord 𝐴𝐵𝐴𝐶𝐴 ) → ( 𝐵𝐶 ) ∈ { 𝐵 , 𝐶 } )
8 2 7 sseldd ( ( Ord 𝐴𝐵𝐴𝐶𝐴 ) → ( 𝐵𝐶 ) ∈ 𝐴 )