Description: The maximum of two ordinals belongs to a third if each of them do. (Contributed by NM, 18-Sep-2006) (Revised by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordunel | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∪ 𝐶 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prssi | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { 𝐵 , 𝐶 } ⊆ 𝐴 ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → { 𝐵 , 𝐶 } ⊆ 𝐴 ) |
| 3 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) | |
| 4 | 3 | 3adant3 | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → 𝐵 ∈ On ) |
| 5 | ordelon | ⊢ ( ( Ord 𝐴 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ On ) | |
| 6 | ordunpr | ⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ) | |
| 7 | 4 5 6 | 3imp3i2an | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ) |
| 8 | 2 7 | sseldd | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐵 ∪ 𝐶 ) ∈ 𝐴 ) |