| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordelon | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  On ) | 
						
							| 2 |  | onelss | ⊢ ( 𝐵  ∈  On  →  ( 𝑥  ∈  𝐵  →  𝑥  ⊆  𝐵 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  𝑥  ⊆  𝐵 ) ) | 
						
							| 4 |  | eloni | ⊢ ( 𝐵  ∈  On  →  Ord  𝐵 ) | 
						
							| 5 |  | ordirr | ⊢ ( Ord  𝐵  →  ¬  𝐵  ∈  𝐵 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐵  ∈  On  →  ¬  𝐵  ∈  𝐵 ) | 
						
							| 7 |  | eldif | ⊢ ( 𝐵  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( 𝐵  ∈  𝐴  ∧  ¬  𝐵  ∈  𝐵 ) ) | 
						
							| 8 | 7 | simplbi2 | ⊢ ( 𝐵  ∈  𝐴  →  ( ¬  𝐵  ∈  𝐵  →  𝐵  ∈  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 9 | 6 8 | syl5 | ⊢ ( 𝐵  ∈  𝐴  →  ( 𝐵  ∈  On  →  𝐵  ∈  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝐵  ∈  On  →  𝐵  ∈  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 11 | 1 10 | mpd | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  𝐵  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 12 | 3 11 | jctild | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  ( 𝐵  ∈  ( 𝐴  ∖  𝐵 )  ∧  𝑥  ⊆  𝐵 ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  ( 𝐵  ∈  ( 𝐴  ∖  𝐵 )  ∧  𝑥  ⊆  𝐵 ) ) ) | 
						
							| 14 |  | sseq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑥  ⊆  𝑦  ↔  𝑥  ⊆  𝐵 ) ) | 
						
							| 15 | 14 | rspcev | ⊢ ( ( 𝐵  ∈  ( 𝐴  ∖  𝐵 )  ∧  𝑥  ⊆  𝐵 )  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) | 
						
							| 16 | 13 15 | syl6 | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  𝐵  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) ) | 
						
							| 17 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ↔  ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 ) ) | 
						
							| 18 | 17 | biimpri | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  →  𝑥  ∈  ( 𝐴  ∖  𝐵 ) ) | 
						
							| 19 |  | ssid | ⊢ 𝑥  ⊆  𝑥 | 
						
							| 20 | 18 19 | jctir | ⊢ ( ( 𝑥  ∈  𝐴  ∧  ¬  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ∧  𝑥  ⊆  𝑥 ) ) | 
						
							| 21 | 20 | ex | ⊢ ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  𝐵  →  ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ∧  𝑥  ⊆  𝑥 ) ) ) | 
						
							| 22 |  | sseq2 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑥  ⊆  𝑦  ↔  𝑥  ⊆  𝑥 ) ) | 
						
							| 23 | 22 | rspcev | ⊢ ( ( 𝑥  ∈  ( 𝐴  ∖  𝐵 )  ∧  𝑥  ⊆  𝑥 )  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) | 
						
							| 24 | 21 23 | syl6 | ⊢ ( 𝑥  ∈  𝐴  →  ( ¬  𝑥  ∈  𝐵  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ( ¬  𝑥  ∈  𝐵  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) ) | 
						
							| 26 | 16 25 | pm2.61d | ⊢ ( ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  ∧  𝑥  ∈  𝐴 )  →  ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) | 
						
							| 27 | 26 | ralrimiva | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦 ) | 
						
							| 28 |  | unidif | ⊢ ( ∀ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  ( 𝐴  ∖  𝐵 ) 𝑥  ⊆  𝑦  →  ∪  ( 𝐴  ∖  𝐵 )  =  ∪  𝐴 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( Ord  𝐴  ∧  𝐵  ∈  𝐴 )  →  ∪  ( 𝐴  ∖  𝐵 )  =  ∪  𝐴 ) |