Metamath Proof Explorer


Theorem ordunidif

Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004)

Ref Expression
Assertion ordunidif ( ( Ord 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 ordelon ( ( Ord 𝐴𝐵𝐴 ) → 𝐵 ∈ On )
2 onelss ( 𝐵 ∈ On → ( 𝑥𝐵𝑥𝐵 ) )
3 1 2 syl ( ( Ord 𝐴𝐵𝐴 ) → ( 𝑥𝐵𝑥𝐵 ) )
4 eloni ( 𝐵 ∈ On → Ord 𝐵 )
5 ordirr ( Ord 𝐵 → ¬ 𝐵𝐵 )
6 4 5 syl ( 𝐵 ∈ On → ¬ 𝐵𝐵 )
7 eldif ( 𝐵 ∈ ( 𝐴𝐵 ) ↔ ( 𝐵𝐴 ∧ ¬ 𝐵𝐵 ) )
8 7 simplbi2 ( 𝐵𝐴 → ( ¬ 𝐵𝐵𝐵 ∈ ( 𝐴𝐵 ) ) )
9 6 8 syl5 ( 𝐵𝐴 → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴𝐵 ) ) )
10 9 adantl ( ( Ord 𝐴𝐵𝐴 ) → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴𝐵 ) ) )
11 1 10 mpd ( ( Ord 𝐴𝐵𝐴 ) → 𝐵 ∈ ( 𝐴𝐵 ) )
12 3 11 jctild ( ( Ord 𝐴𝐵𝐴 ) → ( 𝑥𝐵 → ( 𝐵 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐵 ) ) )
13 12 adantr ( ( ( Ord 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥𝐵 → ( 𝐵 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐵 ) ) )
14 sseq2 ( 𝑦 = 𝐵 → ( 𝑥𝑦𝑥𝐵 ) )
15 14 rspcev ( ( 𝐵 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝐵 ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 )
16 13 15 syl6 ( ( ( Ord 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ( 𝑥𝐵 → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 ) )
17 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
18 17 biimpri ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) → 𝑥 ∈ ( 𝐴𝐵 ) )
19 ssid 𝑥𝑥
20 18 19 jctir ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) → ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝑥 ) )
21 20 ex ( 𝑥𝐴 → ( ¬ 𝑥𝐵 → ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝑥 ) ) )
22 sseq2 ( 𝑦 = 𝑥 → ( 𝑥𝑦𝑥𝑥 ) )
23 22 rspcev ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑥𝑥 ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 )
24 21 23 syl6 ( 𝑥𝐴 → ( ¬ 𝑥𝐵 → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 ) )
25 24 adantl ( ( ( Ord 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ( ¬ 𝑥𝐵 → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 ) )
26 16 25 pm2.61d ( ( ( Ord 𝐴𝐵𝐴 ) ∧ 𝑥𝐴 ) → ∃ 𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 )
27 26 ralrimiva ( ( Ord 𝐴𝐵𝐴 ) → ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 )
28 unidif ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐴𝐵 ) 𝑥𝑦 ( 𝐴𝐵 ) = 𝐴 )
29 27 28 syl ( ( Ord 𝐴𝐵𝐴 ) → ( 𝐴𝐵 ) = 𝐴 )