| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) |
| 2 |
|
onelss |
⊢ ( 𝐵 ∈ On → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵 ) ) |
| 3 |
1 2
|
syl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → 𝑥 ⊆ 𝐵 ) ) |
| 4 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
| 5 |
|
ordirr |
⊢ ( Ord 𝐵 → ¬ 𝐵 ∈ 𝐵 ) |
| 6 |
4 5
|
syl |
⊢ ( 𝐵 ∈ On → ¬ 𝐵 ∈ 𝐵 ) |
| 7 |
|
eldif |
⊢ ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝐵 ∈ 𝐴 ∧ ¬ 𝐵 ∈ 𝐵 ) ) |
| 8 |
7
|
simplbi2 |
⊢ ( 𝐵 ∈ 𝐴 → ( ¬ 𝐵 ∈ 𝐵 → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 9 |
6 8
|
syl5 |
⊢ ( 𝐵 ∈ 𝐴 → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 10 |
9
|
adantl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐵 ∈ On → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) ) |
| 11 |
1 10
|
mpd |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 12 |
3 11
|
jctild |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 13 |
12
|
adantr |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝐵 ) ) ) |
| 14 |
|
sseq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝐵 ) ) |
| 15 |
14
|
rspcev |
⊢ ( ( 𝐵 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝐵 ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 16 |
13 15
|
syl6 |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) ) |
| 17 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 18 |
17
|
biimpri |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 19 |
|
ssid |
⊢ 𝑥 ⊆ 𝑥 |
| 20 |
18 19
|
jctir |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝑥 ) ) |
| 21 |
20
|
ex |
⊢ ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝑥 ) ) ) |
| 22 |
|
sseq2 |
⊢ ( 𝑦 = 𝑥 → ( 𝑥 ⊆ 𝑦 ↔ 𝑥 ⊆ 𝑥 ) ) |
| 23 |
22
|
rspcev |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ∧ 𝑥 ⊆ 𝑥 ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 24 |
21 23
|
syl6 |
⊢ ( 𝑥 ∈ 𝐴 → ( ¬ 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) ) |
| 25 |
24
|
adantl |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ 𝐵 → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) ) |
| 26 |
16 25
|
pm2.61d |
⊢ ( ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 27 |
26
|
ralrimiva |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 ) |
| 28 |
|
unidif |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) 𝑥 ⊆ 𝑦 → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) |
| 29 |
27 28
|
syl |
⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ∪ ( 𝐴 ∖ 𝐵 ) = ∪ 𝐴 ) |