| Step | Hyp | Ref | Expression | 
						
							| 1 |  | epweon | ⊢  E   We  On | 
						
							| 2 |  | weso | ⊢ (  E   We  On  →   E   Or  On ) | 
						
							| 3 | 1 2 | ax-mp | ⊢  E   Or  On | 
						
							| 4 |  | soss | ⊢ ( 𝐴  ⊆  On  →  (  E   Or  On  →   E   Or  𝐴 ) ) | 
						
							| 5 | 3 4 | mpi | ⊢ ( 𝐴  ⊆  On  →   E   Or  𝐴 ) | 
						
							| 6 |  | fimax2g | ⊢ ( (  E   Or  𝐴  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  E  𝑦 ) | 
						
							| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  E  𝑦 ) | 
						
							| 8 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  On ) | 
						
							| 9 | 8 | adantlr | ⊢ ( ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  On ) | 
						
							| 10 |  | ssel2 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 12 |  | epel | ⊢ ( 𝑥  E  𝑦  ↔  𝑥  ∈  𝑦 ) | 
						
							| 13 | 12 | notbii | ⊢ ( ¬  𝑥  E  𝑦  ↔  ¬  𝑥  ∈  𝑦 ) | 
						
							| 14 |  | ontri1 | ⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  On )  →  ( 𝑦  ⊆  𝑥  ↔  ¬  𝑥  ∈  𝑦 ) ) | 
						
							| 15 | 13 14 | bitr4id | ⊢ ( ( 𝑦  ∈  On  ∧  𝑥  ∈  On )  →  ( ¬  𝑥  E  𝑦  ↔  𝑦  ⊆  𝑥 ) ) | 
						
							| 16 | 9 11 15 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  ∧  𝑦  ∈  𝐴 )  →  ( ¬  𝑥  E  𝑦  ↔  𝑦  ⊆  𝑥 ) ) | 
						
							| 17 | 16 | ralbidva | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  E  𝑦  ↔  ∀ 𝑦  ∈  𝐴 𝑦  ⊆  𝑥 ) ) | 
						
							| 18 |  | unissb | ⊢ ( ∪  𝐴  ⊆  𝑥  ↔  ∀ 𝑦  ∈  𝐴 𝑦  ⊆  𝑥 ) | 
						
							| 19 | 17 18 | bitr4di | ⊢ ( ( 𝐴  ⊆  On  ∧  𝑥  ∈  𝐴 )  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑥  E  𝑦  ↔  ∪  𝐴  ⊆  𝑥 ) ) | 
						
							| 20 | 19 | rexbidva | ⊢ ( 𝐴  ⊆  On  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  E  𝑦  ↔  ∃ 𝑥  ∈  𝐴 ∪  𝐴  ⊆  𝑥 ) ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ( ∃ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ¬  𝑥  E  𝑦  ↔  ∃ 𝑥  ∈  𝐴 ∪  𝐴  ⊆  𝑥 ) ) | 
						
							| 22 | 7 21 | mpbid | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥  ∈  𝐴 ∪  𝐴  ⊆  𝑥 ) | 
						
							| 23 |  | elssuni | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ⊆  ∪  𝐴 ) | 
						
							| 24 |  | eqss | ⊢ ( 𝑥  =  ∪  𝐴  ↔  ( 𝑥  ⊆  ∪  𝐴  ∧  ∪  𝐴  ⊆  𝑥 ) ) | 
						
							| 25 |  | eleq1 | ⊢ ( 𝑥  =  ∪  𝐴  →  ( 𝑥  ∈  𝐴  ↔  ∪  𝐴  ∈  𝐴 ) ) | 
						
							| 26 | 25 | biimpcd | ⊢ ( 𝑥  ∈  𝐴  →  ( 𝑥  =  ∪  𝐴  →  ∪  𝐴  ∈  𝐴 ) ) | 
						
							| 27 | 24 26 | biimtrrid | ⊢ ( 𝑥  ∈  𝐴  →  ( ( 𝑥  ⊆  ∪  𝐴  ∧  ∪  𝐴  ⊆  𝑥 )  →  ∪  𝐴  ∈  𝐴 ) ) | 
						
							| 28 | 23 27 | mpand | ⊢ ( 𝑥  ∈  𝐴  →  ( ∪  𝐴  ⊆  𝑥  →  ∪  𝐴  ∈  𝐴 ) ) | 
						
							| 29 | 28 | rexlimiv | ⊢ ( ∃ 𝑥  ∈  𝐴 ∪  𝐴  ⊆  𝑥  →  ∪  𝐴  ∈  𝐴 ) | 
						
							| 30 | 22 29 | syl | ⊢ ( ( 𝐴  ⊆  On  ∧  𝐴  ∈  Fin  ∧  𝐴  ≠  ∅ )  →  ∪  𝐴  ∈  𝐴 ) |