| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
| 2 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) |
| 3 |
|
unieq |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ∪ 𝐴 = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) |
| 4 |
2 3
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = ∪ 𝐴 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) ) |
| 5 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = suc 𝑥 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
| 7 |
6
|
notbid |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
| 8 |
4 7
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) ) |
| 9 |
|
0elon |
⊢ ∅ ∈ On |
| 10 |
9
|
elimel |
⊢ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On |
| 11 |
10
|
onuninsuci |
⊢ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) |
| 12 |
8 11
|
dedth |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 13 |
|
unon |
⊢ ∪ On = On |
| 14 |
13
|
eqcomi |
⊢ On = ∪ On |
| 15 |
|
onprc |
⊢ ¬ On ∈ V |
| 16 |
|
vex |
⊢ 𝑥 ∈ V |
| 17 |
16
|
sucex |
⊢ suc 𝑥 ∈ V |
| 18 |
|
eleq1 |
⊢ ( On = suc 𝑥 → ( On ∈ V ↔ suc 𝑥 ∈ V ) ) |
| 19 |
17 18
|
mpbiri |
⊢ ( On = suc 𝑥 → On ∈ V ) |
| 20 |
15 19
|
mto |
⊢ ¬ On = suc 𝑥 |
| 21 |
20
|
a1i |
⊢ ( 𝑥 ∈ On → ¬ On = suc 𝑥 ) |
| 22 |
21
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 |
| 23 |
14 22
|
2th |
⊢ ( On = ∪ On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) |
| 24 |
|
id |
⊢ ( 𝐴 = On → 𝐴 = On ) |
| 25 |
|
unieq |
⊢ ( 𝐴 = On → ∪ 𝐴 = ∪ On ) |
| 26 |
24 25
|
eqeq12d |
⊢ ( 𝐴 = On → ( 𝐴 = ∪ 𝐴 ↔ On = ∪ On ) ) |
| 27 |
|
eqeq1 |
⊢ ( 𝐴 = On → ( 𝐴 = suc 𝑥 ↔ On = suc 𝑥 ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝐴 = On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) |
| 29 |
28
|
notbid |
⊢ ( 𝐴 = On → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) |
| 30 |
26 29
|
bibi12d |
⊢ ( 𝐴 = On → ( ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( On = ∪ On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) ) |
| 31 |
23 30
|
mpbiri |
⊢ ( 𝐴 = On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 32 |
12 31
|
jaoi |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
| 33 |
1 32
|
sylbi |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |