Step |
Hyp |
Ref |
Expression |
1 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
2 |
|
id |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) |
3 |
|
unieq |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ∪ 𝐴 = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = ∪ 𝐴 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ) ) |
5 |
|
eqeq1 |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( 𝐴 = suc 𝑥 ↔ if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
7 |
6
|
notbid |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) |
8 |
4 7
|
bibi12d |
⊢ ( 𝐴 = if ( 𝐴 ∈ On , 𝐴 , ∅ ) → ( ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) ) ) |
9 |
|
0elon |
⊢ ∅ ∈ On |
10 |
9
|
elimel |
⊢ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ∈ On |
11 |
10
|
onuninsuci |
⊢ ( if ( 𝐴 ∈ On , 𝐴 , ∅ ) = ∪ if ( 𝐴 ∈ On , 𝐴 , ∅ ) ↔ ¬ ∃ 𝑥 ∈ On if ( 𝐴 ∈ On , 𝐴 , ∅ ) = suc 𝑥 ) |
12 |
8 11
|
dedth |
⊢ ( 𝐴 ∈ On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
13 |
|
unon |
⊢ ∪ On = On |
14 |
13
|
eqcomi |
⊢ On = ∪ On |
15 |
|
onprc |
⊢ ¬ On ∈ V |
16 |
|
vex |
⊢ 𝑥 ∈ V |
17 |
16
|
sucex |
⊢ suc 𝑥 ∈ V |
18 |
|
eleq1 |
⊢ ( On = suc 𝑥 → ( On ∈ V ↔ suc 𝑥 ∈ V ) ) |
19 |
17 18
|
mpbiri |
⊢ ( On = suc 𝑥 → On ∈ V ) |
20 |
15 19
|
mto |
⊢ ¬ On = suc 𝑥 |
21 |
20
|
a1i |
⊢ ( 𝑥 ∈ On → ¬ On = suc 𝑥 ) |
22 |
21
|
nrex |
⊢ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 |
23 |
14 22
|
2th |
⊢ ( On = ∪ On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) |
24 |
|
id |
⊢ ( 𝐴 = On → 𝐴 = On ) |
25 |
|
unieq |
⊢ ( 𝐴 = On → ∪ 𝐴 = ∪ On ) |
26 |
24 25
|
eqeq12d |
⊢ ( 𝐴 = On → ( 𝐴 = ∪ 𝐴 ↔ On = ∪ On ) ) |
27 |
|
eqeq1 |
⊢ ( 𝐴 = On → ( 𝐴 = suc 𝑥 ↔ On = suc 𝑥 ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝐴 = On → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) |
29 |
28
|
notbid |
⊢ ( 𝐴 = On → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) |
30 |
26 29
|
bibi12d |
⊢ ( 𝐴 = On → ( ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ↔ ( On = ∪ On ↔ ¬ ∃ 𝑥 ∈ On On = suc 𝑥 ) ) ) |
31 |
23 30
|
mpbiri |
⊢ ( 𝐴 = On → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
32 |
12 31
|
jaoi |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
33 |
1 32
|
sylbi |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |