Step |
Hyp |
Ref |
Expression |
1 |
|
orduniss |
⊢ ( Ord 𝐴 → ∪ 𝐴 ⊆ 𝐴 ) |
2 |
|
orduni |
⊢ ( Ord 𝐴 → Ord ∪ 𝐴 ) |
3 |
|
ordelssne |
⊢ ( ( Ord ∪ 𝐴 ∧ Ord 𝐴 ) → ( ∪ 𝐴 ∈ 𝐴 ↔ ( ∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴 ) ) ) |
4 |
2 3
|
mpancom |
⊢ ( Ord 𝐴 → ( ∪ 𝐴 ∈ 𝐴 ↔ ( ∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴 ) ) ) |
5 |
4
|
biimprd |
⊢ ( Ord 𝐴 → ( ( ∪ 𝐴 ⊆ 𝐴 ∧ ∪ 𝐴 ≠ 𝐴 ) → ∪ 𝐴 ∈ 𝐴 ) ) |
6 |
1 5
|
mpand |
⊢ ( Ord 𝐴 → ( ∪ 𝐴 ≠ 𝐴 → ∪ 𝐴 ∈ 𝐴 ) ) |
7 |
|
ordsucss |
⊢ ( Ord 𝐴 → ( ∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴 ) ) |
8 |
6 7
|
syld |
⊢ ( Ord 𝐴 → ( ∪ 𝐴 ≠ 𝐴 → suc ∪ 𝐴 ⊆ 𝐴 ) ) |
9 |
|
ordsucuni |
⊢ ( Ord 𝐴 → 𝐴 ⊆ suc ∪ 𝐴 ) |
10 |
8 9
|
jctild |
⊢ ( Ord 𝐴 → ( ∪ 𝐴 ≠ 𝐴 → ( 𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴 ) ) ) |
11 |
|
df-ne |
⊢ ( 𝐴 ≠ ∪ 𝐴 ↔ ¬ 𝐴 = ∪ 𝐴 ) |
12 |
|
necom |
⊢ ( 𝐴 ≠ ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴 ) |
13 |
11 12
|
bitr3i |
⊢ ( ¬ 𝐴 = ∪ 𝐴 ↔ ∪ 𝐴 ≠ 𝐴 ) |
14 |
|
eqss |
⊢ ( 𝐴 = suc ∪ 𝐴 ↔ ( 𝐴 ⊆ suc ∪ 𝐴 ∧ suc ∪ 𝐴 ⊆ 𝐴 ) ) |
15 |
10 13 14
|
3imtr4g |
⊢ ( Ord 𝐴 → ( ¬ 𝐴 = ∪ 𝐴 → 𝐴 = suc ∪ 𝐴 ) ) |
16 |
15
|
orrd |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴 ) ) |