Metamath Proof Explorer


Theorem orduniorsuc

Description: An ordinal class is either its union or the successor of its union. If we adopt the view that zero is a limit ordinal, this means every ordinal class is either a limit or a successor. (Contributed by NM, 13-Sep-2003)

Ref Expression
Assertion orduniorsuc ( Ord 𝐴 → ( 𝐴 = 𝐴𝐴 = suc 𝐴 ) )

Proof

Step Hyp Ref Expression
1 orduniss ( Ord 𝐴 𝐴𝐴 )
2 orduni ( Ord 𝐴 → Ord 𝐴 )
3 ordelssne ( ( Ord 𝐴 ∧ Ord 𝐴 ) → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴 ) ) )
4 2 3 mpancom ( Ord 𝐴 → ( 𝐴𝐴 ↔ ( 𝐴𝐴 𝐴𝐴 ) ) )
5 4 biimprd ( Ord 𝐴 → ( ( 𝐴𝐴 𝐴𝐴 ) → 𝐴𝐴 ) )
6 1 5 mpand ( Ord 𝐴 → ( 𝐴𝐴 𝐴𝐴 ) )
7 ordsucss ( Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴 ) )
8 6 7 syld ( Ord 𝐴 → ( 𝐴𝐴 → suc 𝐴𝐴 ) )
9 ordsucuni ( Ord 𝐴𝐴 ⊆ suc 𝐴 )
10 8 9 jctild ( Ord 𝐴 → ( 𝐴𝐴 → ( 𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴 ) ) )
11 df-ne ( 𝐴 𝐴 ↔ ¬ 𝐴 = 𝐴 )
12 necom ( 𝐴 𝐴 𝐴𝐴 )
13 11 12 bitr3i ( ¬ 𝐴 = 𝐴 𝐴𝐴 )
14 eqss ( 𝐴 = suc 𝐴 ↔ ( 𝐴 ⊆ suc 𝐴 ∧ suc 𝐴𝐴 ) )
15 10 13 14 3imtr4g ( Ord 𝐴 → ( ¬ 𝐴 = 𝐴𝐴 = suc 𝐴 ) )
16 15 orrd ( Ord 𝐴 → ( 𝐴 = 𝐴𝐴 = suc 𝐴 ) )