Metamath Proof Explorer


Theorem orduniss

Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003)

Ref Expression
Assertion orduniss ( Ord 𝐴 𝐴𝐴 )

Proof

Step Hyp Ref Expression
1 ordtr ( Ord 𝐴 → Tr 𝐴 )
2 df-tr ( Tr 𝐴 𝐴𝐴 )
3 1 2 sylib ( Ord 𝐴 𝐴𝐴 )