| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab | ⊢ { 𝑥  ∈  On  ∣  𝑥  ⊆  𝐴 }  =  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 ) } | 
						
							| 2 |  | incom | ⊢ ( { 𝑥  ∣  𝑥  ∈  On }  ∩  { 𝑥  ∣  𝑥  ⊆  𝐴 } )  =  ( { 𝑥  ∣  𝑥  ⊆  𝐴 }  ∩  { 𝑥  ∣  𝑥  ∈  On } ) | 
						
							| 3 |  | inab | ⊢ ( { 𝑥  ∣  𝑥  ∈  On }  ∩  { 𝑥  ∣  𝑥  ⊆  𝐴 } )  =  { 𝑥  ∣  ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 ) } | 
						
							| 4 |  | df-pw | ⊢ 𝒫  𝐴  =  { 𝑥  ∣  𝑥  ⊆  𝐴 } | 
						
							| 5 | 4 | eqcomi | ⊢ { 𝑥  ∣  𝑥  ⊆  𝐴 }  =  𝒫  𝐴 | 
						
							| 6 |  | abid2 | ⊢ { 𝑥  ∣  𝑥  ∈  On }  =  On | 
						
							| 7 | 5 6 | ineq12i | ⊢ ( { 𝑥  ∣  𝑥  ⊆  𝐴 }  ∩  { 𝑥  ∣  𝑥  ∈  On } )  =  ( 𝒫  𝐴  ∩  On ) | 
						
							| 8 | 2 3 7 | 3eqtr3i | ⊢ { 𝑥  ∣  ( 𝑥  ∈  On  ∧  𝑥  ⊆  𝐴 ) }  =  ( 𝒫  𝐴  ∩  On ) | 
						
							| 9 | 1 8 | eqtri | ⊢ { 𝑥  ∈  On  ∣  𝑥  ⊆  𝐴 }  =  ( 𝒫  𝐴  ∩  On ) | 
						
							| 10 |  | ordpwsuc | ⊢ ( Ord  𝐴  →  ( 𝒫  𝐴  ∩  On )  =  suc  𝐴 ) | 
						
							| 11 | 9 10 | eqtrid | ⊢ ( Ord  𝐴  →  { 𝑥  ∈  On  ∣  𝑥  ⊆  𝐴 }  =  suc  𝐴 ) | 
						
							| 12 | 11 | unieqd | ⊢ ( Ord  𝐴  →  ∪  { 𝑥  ∈  On  ∣  𝑥  ⊆  𝐴 }  =  ∪  suc  𝐴 ) | 
						
							| 13 |  | ordunisuc | ⊢ ( Ord  𝐴  →  ∪  suc  𝐴  =  𝐴 ) | 
						
							| 14 | 12 13 | eqtrd | ⊢ ( Ord  𝐴  →  ∪  { 𝑥  ∈  On  ∣  𝑥  ⊆  𝐴 }  =  𝐴 ) |