Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | ordunisssuc | ⊢ ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) → ( ∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel2 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) | |
2 | ordsssuc | ⊢ ( ( 𝑥 ∈ On ∧ Ord 𝐵 ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) | |
3 | 1 2 | sylan | ⊢ ( ( ( 𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴 ) ∧ Ord 𝐵 ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
4 | 3 | an32s | ⊢ ( ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵 ) ) |
5 | 4 | ralbidva | ⊢ ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵 ) ) |
6 | unissb | ⊢ ( ∪ 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵 ) | |
7 | dfss3 | ⊢ ( 𝐴 ⊆ suc 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ suc 𝐵 ) | |
8 | 5 6 7 | 3bitr4g | ⊢ ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) → ( ∪ 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵 ) ) |