Metamath Proof Explorer


Theorem ordunisssuc

Description: A subclass relationship for union and successor of ordinal classes. (Contributed by NM, 28-Nov-2003)

Ref Expression
Assertion ordunisssuc ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssel2 ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) → 𝑥 ∈ On )
2 ordsssuc ( ( 𝑥 ∈ On ∧ Ord 𝐵 ) → ( 𝑥𝐵𝑥 ∈ suc 𝐵 ) )
3 1 2 sylan ( ( ( 𝐴 ⊆ On ∧ 𝑥𝐴 ) ∧ Ord 𝐵 ) → ( 𝑥𝐵𝑥 ∈ suc 𝐵 ) )
4 3 an32s ( ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑥𝐵𝑥 ∈ suc 𝐵 ) )
5 4 ralbidva ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) → ( ∀ 𝑥𝐴 𝑥𝐵 ↔ ∀ 𝑥𝐴 𝑥 ∈ suc 𝐵 ) )
6 unissb ( 𝐴𝐵 ↔ ∀ 𝑥𝐴 𝑥𝐵 )
7 dfss3 ( 𝐴 ⊆ suc 𝐵 ↔ ∀ 𝑥𝐴 𝑥 ∈ suc 𝐵 )
8 5 6 7 3bitr4g ( ( 𝐴 ⊆ On ∧ Ord 𝐵 ) → ( 𝐴𝐵𝐴 ⊆ suc 𝐵 ) )