| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordeleqon | ⊢ ( Ord  𝐴  ↔  ( 𝐴  ∈  On  ∨  𝐴  =  On ) ) | 
						
							| 2 |  | suceq | ⊢ ( 𝑥  =  𝐴  →  suc  𝑥  =  suc  𝐴 ) | 
						
							| 3 | 2 | unieqd | ⊢ ( 𝑥  =  𝐴  →  ∪  suc  𝑥  =  ∪  suc  𝐴 ) | 
						
							| 4 |  | id | ⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 ) | 
						
							| 5 | 3 4 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ∪  suc  𝑥  =  𝑥  ↔  ∪  suc  𝐴  =  𝐴 ) ) | 
						
							| 6 |  | eloni | ⊢ ( 𝑥  ∈  On  →  Ord  𝑥 ) | 
						
							| 7 |  | ordtr | ⊢ ( Ord  𝑥  →  Tr  𝑥 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑥  ∈  On  →  Tr  𝑥 ) | 
						
							| 9 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 10 | 9 | unisuc | ⊢ ( Tr  𝑥  ↔  ∪  suc  𝑥  =  𝑥 ) | 
						
							| 11 | 8 10 | sylib | ⊢ ( 𝑥  ∈  On  →  ∪  suc  𝑥  =  𝑥 ) | 
						
							| 12 | 5 11 | vtoclga | ⊢ ( 𝐴  ∈  On  →  ∪  suc  𝐴  =  𝐴 ) | 
						
							| 13 |  | sucon | ⊢ suc  On  =  On | 
						
							| 14 | 13 | unieqi | ⊢ ∪  suc  On  =  ∪  On | 
						
							| 15 |  | unon | ⊢ ∪  On  =  On | 
						
							| 16 | 14 15 | eqtri | ⊢ ∪  suc  On  =  On | 
						
							| 17 |  | suceq | ⊢ ( 𝐴  =  On  →  suc  𝐴  =  suc  On ) | 
						
							| 18 | 17 | unieqd | ⊢ ( 𝐴  =  On  →  ∪  suc  𝐴  =  ∪  suc  On ) | 
						
							| 19 |  | id | ⊢ ( 𝐴  =  On  →  𝐴  =  On ) | 
						
							| 20 | 16 18 19 | 3eqtr4a | ⊢ ( 𝐴  =  On  →  ∪  suc  𝐴  =  𝐴 ) | 
						
							| 21 | 12 20 | jaoi | ⊢ ( ( 𝐴  ∈  On  ∨  𝐴  =  On )  →  ∪  suc  𝐴  =  𝐴 ) | 
						
							| 22 | 1 21 | sylbi | ⊢ ( Ord  𝐴  →  ∪  suc  𝐴  =  𝐴 ) |