Metamath Proof Explorer


Theorem ordunisuc

Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )

Proof

Step Hyp Ref Expression
1 ordeleqon ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) )
2 suceq ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 )
3 2 unieqd ( 𝑥 = 𝐴 suc 𝑥 = suc 𝐴 )
4 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
5 3 4 eqeq12d ( 𝑥 = 𝐴 → ( suc 𝑥 = 𝑥 suc 𝐴 = 𝐴 ) )
6 eloni ( 𝑥 ∈ On → Ord 𝑥 )
7 ordtr ( Ord 𝑥 → Tr 𝑥 )
8 6 7 syl ( 𝑥 ∈ On → Tr 𝑥 )
9 vex 𝑥 ∈ V
10 9 unisuc ( Tr 𝑥 suc 𝑥 = 𝑥 )
11 8 10 sylib ( 𝑥 ∈ On → suc 𝑥 = 𝑥 )
12 5 11 vtoclga ( 𝐴 ∈ On → suc 𝐴 = 𝐴 )
13 sucon suc On = On
14 13 unieqi suc On = On
15 unon On = On
16 14 15 eqtri suc On = On
17 suceq ( 𝐴 = On → suc 𝐴 = suc On )
18 17 unieqd ( 𝐴 = On → suc 𝐴 = suc On )
19 id ( 𝐴 = On → 𝐴 = On )
20 16 18 19 3eqtr4a ( 𝐴 = On → suc 𝐴 = 𝐴 )
21 12 20 jaoi ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → suc 𝐴 = 𝐴 )
22 1 21 sylbi ( Ord 𝐴 suc 𝐴 = 𝐴 )