Step |
Hyp |
Ref |
Expression |
1 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
2 |
|
suceq |
⊢ ( 𝑥 = 𝐴 → suc 𝑥 = suc 𝐴 ) |
3 |
2
|
unieqd |
⊢ ( 𝑥 = 𝐴 → ∪ suc 𝑥 = ∪ suc 𝐴 ) |
4 |
|
id |
⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) |
5 |
3 4
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ∪ suc 𝑥 = 𝑥 ↔ ∪ suc 𝐴 = 𝐴 ) ) |
6 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
7 |
|
ordtr |
⊢ ( Ord 𝑥 → Tr 𝑥 ) |
8 |
6 7
|
syl |
⊢ ( 𝑥 ∈ On → Tr 𝑥 ) |
9 |
|
vex |
⊢ 𝑥 ∈ V |
10 |
9
|
unisuc |
⊢ ( Tr 𝑥 ↔ ∪ suc 𝑥 = 𝑥 ) |
11 |
8 10
|
sylib |
⊢ ( 𝑥 ∈ On → ∪ suc 𝑥 = 𝑥 ) |
12 |
5 11
|
vtoclga |
⊢ ( 𝐴 ∈ On → ∪ suc 𝐴 = 𝐴 ) |
13 |
|
sucon |
⊢ suc On = On |
14 |
13
|
unieqi |
⊢ ∪ suc On = ∪ On |
15 |
|
unon |
⊢ ∪ On = On |
16 |
14 15
|
eqtri |
⊢ ∪ suc On = On |
17 |
|
suceq |
⊢ ( 𝐴 = On → suc 𝐴 = suc On ) |
18 |
17
|
unieqd |
⊢ ( 𝐴 = On → ∪ suc 𝐴 = ∪ suc On ) |
19 |
|
id |
⊢ ( 𝐴 = On → 𝐴 = On ) |
20 |
16 18 19
|
3eqtr4a |
⊢ ( 𝐴 = On → ∪ suc 𝐴 = 𝐴 ) |
21 |
12 20
|
jaoi |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ∪ suc 𝐴 = 𝐴 ) |
22 |
1 21
|
sylbi |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |