Step |
Hyp |
Ref |
Expression |
1 |
|
eloni |
⊢ ( 𝐵 ∈ On → Ord 𝐵 ) |
2 |
|
eloni |
⊢ ( 𝐶 ∈ On → Ord 𝐶 ) |
3 |
|
ordtri2or2 |
⊢ ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵 ) ) |
5 |
4
|
orcomd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ) |
6 |
|
ssequn2 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐵 ) |
7 |
|
ssequn1 |
⊢ ( 𝐵 ⊆ 𝐶 ↔ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) |
8 |
6 7
|
orbi12i |
⊢ ( ( 𝐶 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐶 ) ↔ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) |
9 |
5 8
|
sylib |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) |
10 |
|
unexg |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∪ 𝐶 ) ∈ V ) |
11 |
|
elprg |
⊢ ( ( 𝐵 ∪ 𝐶 ) ∈ V → ( ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) ) |
12 |
10 11
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐵 ∪ 𝐶 ) = 𝐵 ∨ ( 𝐵 ∪ 𝐶 ) = 𝐶 ) ) ) |
13 |
9 12
|
mpbird |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵 ∪ 𝐶 ) ∈ { 𝐵 , 𝐶 } ) |