Metamath Proof Explorer


Theorem ordunpr

Description: The maximum of two ordinals is equal to one of them. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion ordunpr ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 ) ∈ { 𝐵 , 𝐶 } )

Proof

Step Hyp Ref Expression
1 eloni ( 𝐵 ∈ On → Ord 𝐵 )
2 eloni ( 𝐶 ∈ On → Ord 𝐶 )
3 ordtri2or2 ( ( Ord 𝐵 ∧ Ord 𝐶 ) → ( 𝐵𝐶𝐶𝐵 ) )
4 1 2 3 syl2an ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶𝐶𝐵 ) )
5 4 orcomd ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐶𝐵𝐵𝐶 ) )
6 ssequn2 ( 𝐶𝐵 ↔ ( 𝐵𝐶 ) = 𝐵 )
7 ssequn1 ( 𝐵𝐶 ↔ ( 𝐵𝐶 ) = 𝐶 )
8 6 7 orbi12i ( ( 𝐶𝐵𝐵𝐶 ) ↔ ( ( 𝐵𝐶 ) = 𝐵 ∨ ( 𝐵𝐶 ) = 𝐶 ) )
9 5 8 sylib ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵𝐶 ) = 𝐵 ∨ ( 𝐵𝐶 ) = 𝐶 ) )
10 unexg ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 ) ∈ V )
11 elprg ( ( 𝐵𝐶 ) ∈ V → ( ( 𝐵𝐶 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐵𝐶 ) = 𝐵 ∨ ( 𝐵𝐶 ) = 𝐶 ) ) )
12 10 11 syl ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( ( 𝐵𝐶 ) ∈ { 𝐵 , 𝐶 } ↔ ( ( 𝐵𝐶 ) = 𝐵 ∨ ( 𝐵𝐶 ) = 𝐶 ) ) )
13 9 12 mpbird ( ( 𝐵 ∈ On ∧ 𝐶 ∈ On ) → ( 𝐵𝐶 ) ∈ { 𝐵 , 𝐶 } )