Metamath Proof Explorer


Theorem ordvdsmul

Description: If an integer divides either of two others, it divides their product. (Contributed by Paul Chapman, 17-Nov-2012) (Proof shortened by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion ordvdsmul ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾𝑀𝐾𝑁 ) → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 dvdsmultr1 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾𝑀𝐾 ∥ ( 𝑀 · 𝑁 ) ) )
2 dvdsmultr2 ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾𝑁𝐾 ∥ ( 𝑀 · 𝑁 ) ) )
3 1 2 jaod ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾𝑀𝐾𝑁 ) → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) )