Metamath Proof Explorer


Theorem ordwe

Description: Membership well-orders every ordinal. Proposition 7.4 of TakeutiZaring p. 36. (Contributed by NM, 3-Apr-1994)

Ref Expression
Assertion ordwe ( Ord 𝐴 → E We 𝐴 )

Proof

Step Hyp Ref Expression
1 df-ord ( Ord 𝐴 ↔ ( Tr 𝐴 ∧ E We 𝐴 ) )
2 1 simprbi ( Ord 𝐴 → E We 𝐴 )