Step |
Hyp |
Ref |
Expression |
1 |
|
orduninsuc |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) ) |
2 |
1
|
biimprd |
⊢ ( Ord 𝐴 → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 = ∪ 𝐴 ) ) |
3 |
|
unizlim |
⊢ ( Ord 𝐴 → ( 𝐴 = ∪ 𝐴 ↔ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
4 |
2 3
|
sylibd |
⊢ ( Ord 𝐴 → ( ¬ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
5 |
4
|
orrd |
⊢ ( Ord 𝐴 → ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
6 |
|
3orass |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( 𝐴 = ∅ ∨ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) ) |
7 |
|
or12 |
⊢ ( ( 𝐴 = ∅ ∨ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) ↔ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ↔ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 = ∅ ∨ Lim 𝐴 ) ) ) |
9 |
5 8
|
sylibr |
⊢ ( Ord 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |
10 |
|
ord0 |
⊢ Ord ∅ |
11 |
|
ordeq |
⊢ ( 𝐴 = ∅ → ( Ord 𝐴 ↔ Ord ∅ ) ) |
12 |
10 11
|
mpbiri |
⊢ ( 𝐴 = ∅ → Ord 𝐴 ) |
13 |
|
suceloni |
⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) |
14 |
|
eleq1 |
⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) |
15 |
13 14
|
syl5ibr |
⊢ ( 𝐴 = suc 𝑥 → ( 𝑥 ∈ On → 𝐴 ∈ On ) ) |
16 |
|
eloni |
⊢ ( 𝐴 ∈ On → Ord 𝐴 ) |
17 |
15 16
|
syl6com |
⊢ ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → Ord 𝐴 ) ) |
18 |
17
|
rexlimiv |
⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → Ord 𝐴 ) |
19 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
20 |
12 18 19
|
3jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) → Ord 𝐴 ) |
21 |
9 20
|
impbii |
⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) |