Description: Elimination of disjunction by denial of a disjunct. Theorem *2.55 of WhiteheadRussell p. 107. (Contributed by NM, 12-Aug-1994) (Proof shortened by Wolf Lammen, 21-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | orel1 | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
2 | 1 | com12 | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) |