Metamath Proof Explorer


Theorem orimdi

Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013)

Ref Expression
Assertion orimdi ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 imdi ( ( ¬ 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜑𝜒 ) ) )
2 df-or ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ¬ 𝜑 → ( 𝜓𝜒 ) ) )
3 df-or ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
4 df-or ( ( 𝜑𝜒 ) ↔ ( ¬ 𝜑𝜒 ) )
5 3 4 imbi12i ( ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) → ( ¬ 𝜑𝜒 ) ) )
6 1 2 5 3bitr4i ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )