Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | orimdi | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdi | ⊢ ( ( ¬ 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) → ( ¬ 𝜑 → 𝜒 ) ) ) | |
2 | df-or | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ¬ 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
3 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
4 | df-or | ⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( ¬ 𝜑 → 𝜒 ) ) | |
5 | 3 4 | imbi12i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) → ( ¬ 𝜑 → 𝜒 ) ) ) |
6 | 1 2 5 | 3bitr4i | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) |