Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orimdi | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdi | ⊢ ( ( ¬ 𝜑 → ( 𝜓 → 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) → ( ¬ 𝜑 → 𝜒 ) ) ) | |
| 2 | df-or | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ¬ 𝜑 → ( 𝜓 → 𝜒 ) ) ) | |
| 3 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
| 4 | df-or | ⊢ ( ( 𝜑 ∨ 𝜒 ) ↔ ( ¬ 𝜑 → 𝜒 ) ) | |
| 5 | 3 4 | imbi12i | ⊢ ( ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ↔ ( ( ¬ 𝜑 → 𝜓 ) → ( ¬ 𝜑 → 𝜒 ) ) ) |
| 6 | 1 2 5 | 3bitr4i | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) |