Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | orordi | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm | ⊢ ( ( 𝜑 ∨ 𝜑 ) ↔ 𝜑 ) | |
2 | 1 | orbi1i | ⊢ ( ( ( 𝜑 ∨ 𝜑 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
3 | or4 | ⊢ ( ( ( 𝜑 ∨ 𝜑 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) | |
4 | 2 3 | bitr3i | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |