Metamath Proof Explorer


Theorem orordi

Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995)

Ref Expression
Assertion orordi ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 oridm ( ( 𝜑𝜑 ) ↔ 𝜑 )
2 1 orbi1i ( ( ( 𝜑𝜑 ) ∨ ( 𝜓𝜒 ) ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
3 or4 ( ( ( 𝜑𝜑 ) ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )
4 2 3 bitr3i ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ ( 𝜑𝜒 ) ) )