Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orordi | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oridm | ⊢ ( ( 𝜑 ∨ 𝜑 ) ↔ 𝜑 ) | |
| 2 | 1 | orbi1i | ⊢ ( ( ( 𝜑 ∨ 𝜑 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ) |
| 3 | or4 | ⊢ ( ( ( 𝜑 ∨ 𝜑 ) ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) | |
| 4 | 2 3 | bitr3i | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ ( 𝜑 ∨ 𝜒 ) ) ) |