Metamath Proof Explorer


Theorem orordir

Description: Distribution of disjunction over disjunction. (Contributed by NM, 25-Feb-1995)

Ref Expression
Assertion orordir ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 oridm ( ( 𝜒𝜒 ) ↔ 𝜒 )
2 1 orbi2i ( ( ( 𝜑𝜓 ) ∨ ( 𝜒𝜒 ) ) ↔ ( ( 𝜑𝜓 ) ∨ 𝜒 ) )
3 or4 ( ( ( 𝜑𝜓 ) ∨ ( 𝜒𝜒 ) ) ↔ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )
4 2 3 bitr3i ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ( 𝜑𝜒 ) ∨ ( 𝜓𝜒 ) ) )